Iklan

Pertanyaan

Nilai x yangmemenuhi 3 1 ​ lo g ( x + 3 ​ ) + 3 1 ​ lo g ( x − 3 ​ ) > 0 adalah...

Nilai  yang memenuhi  adalah...

  1. x less than negative square root of 3 atau 0 less than x less than 2 

  2. negative 2 less than x less than negative square root of 3 atau square root of 3 less than x less than 2 

  3. square root of 3 less than x less than 2 

  4. negative 2 less than x less than 2 

  5. negative 3 less than x less than 2 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

10

:

12

:

52

Klaim

Iklan

R. Hajrianti

Master Teacher

Mahasiswa/Alumni Universitas Pendidikan Indonesia

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah C.

jawaban yang benar adalah C.

Pembahasan

Ingat sifat logaritma Ingat sifat logaritma! Sehingga, Menentukan daerah penyelesaian Syarat: Untuk , jika maka: Untuk , jika maka: Untuk , jika maka: Jadi, nilai x yang memenuhi pertidaksamaan di atas adalah . Oleh karena itu, jawaban yang benar adalah C.

log presuperscript 1 third end presuperscript space open parentheses x plus square root of 3 close parentheses plus log presuperscript 1 third end presuperscript space open parentheses x minus square root of 3 close parentheses greater than 0  

Ingat sifat logaritma

log presuperscript a space b plus log presuperscript a space c equals log presuperscript a space b c 

table attributes columnalign right center left columnspacing 0px end attributes row cell log presuperscript 1 third end presuperscript space open parentheses x plus square root of 3 close parentheses plus log presuperscript 1 third end presuperscript space open parentheses x minus square root of 3 close parentheses end cell greater than 0 row cell log presuperscript 1 third end presuperscript space open parentheses x plus square root of 3 close parentheses open parentheses x minus square root of 3 close parentheses end cell greater than 0 row cell log presuperscript 1 third end presuperscript space open parentheses x squared minus 3 close parentheses end cell greater than 0 end table 

Ingat sifat logaritma!

log presuperscript a space 1 equals 0 rightwards double arrow a to the power of 0 equals 1 

Sehingga,

table attributes columnalign right center left columnspacing 0px end attributes row cell log presuperscript 1 third end presuperscript space open parentheses x squared minus 3 close parentheses end cell greater than 0 row cell log presuperscript 1 third end presuperscript space open parentheses x squared minus 3 close parentheses end cell greater than cell log presuperscript 1 third end presuperscript space 1 end cell row cell x squared minus 3 end cell greater than 1 row cell x squared minus 3 minus 1 end cell greater than 0 row cell x squared minus 4 end cell greater than 0 row cell open parentheses x plus 2 close parentheses open parentheses x minus 2 close parentheses end cell greater than 0 row cell x plus 2 end cell greater than 0 row x greater than cell negative 2 end cell row cell x minus 2 end cell greater than 0 row x greater than 2 end table 

Menentukan daerah penyelesaian

 

Syarat:

table attributes columnalign right center left columnspacing 0px end attributes row cell x plus square root of 3 end cell greater than 0 row x greater than cell negative square root of 3 space open parentheses positif close parentheses end cell row cell x minus square root of 3 end cell greater than 0 row x greater than cell square root of 3 space open parentheses positif close parentheses end cell end table  

Untuk negative 2 less than x less than 2, jika x equals 0 maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell x squared minus 4 end cell less than 0 row cell open parentheses negative 1 close parentheses squared minus 4 end cell less than 0 row cell 1 minus 4 end cell less than 0 row cell negative 3 end cell less than cell 0 space open parentheses negatif close parentheses end cell end table 

Untuk x less than negative 2, jika x equals negative 3 maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell x squared minus 4 end cell greater than 0 row cell open parentheses negative 3 close parentheses squared minus 4 end cell greater than 0 row cell 9 minus 4 end cell greater than 0 row 5 greater than cell 0 space open parentheses positif close parentheses end cell end table  

Untuk x greater than 2, jika x equals 3 maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell x squared minus 4 end cell greater than 0 row cell 3 squared minus 4 end cell greater than 0 row cell 9 minus 4 end cell greater than 0 row 5 greater than cell 0 space open parentheses positif close parentheses end cell end table  

Jadi, nilai x yang memenuhi pertidaksamaan di atas adalah square root of 3 less than x less than 2.

Oleh karena itu, jawaban yang benar adalah C.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Tentukan himpunan penyelesaian pertidaksamaan berikut: b. 4 1 ​ lo g ( x 2 − 24 ) ≥ 0

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia