Iklan

Pertanyaan

Misalkan n adalah bilangan bulat sehingga memiliki minimal satu asimtot tegak. Nilai n terkecil yang mungkin adalah ....

Misalkan n  adalah bilangan bulat sehingga begin mathsize 14px style f open parentheses x close parentheses equals fraction numerator open parentheses x squared minus 4 close parentheses to the power of 5 open parentheses x squared minus 6 x plus 8 close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction end style memiliki minimal satu asimtot tegak. Nilai n terkecil yang mungkin adalah ....

  1. 2

  2. 6

  3. 7

  4. 8

  5. 9

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

10

:

49

:

46

Klaim

Iklan

M. Mariyam

Master Teacher

Mahasiswa/Alumni Institut Pertanian Bogor

Jawaban terverifikasi

Pembahasan

Perhatikan bahwa Perhatikan bahwa fungsi f (x) memiliki penyebut = 0 jika x = 2 . Perhatikan bahwa Jika n < 7 , maka 7 - n > 0 , sehingga Maka untuk n < 7 , f( x) tidak memiliki asimtot tegak. Selanjutnya jika n = 7 , maka Maka untuk n = 7 , f( x) tidak memiliki asimtot tegak. Kemudian jika n > 7 , maka n - 7 > 0 , sehingga Maka untuk n > 7 , f( x) memiliki asimtot tegak yaitu x = 2 . Karena n adalah bilangan bulat, maka n terkecil yang mungkin sehingga f (x) memiliki asimtot tegak adalah n = 8 .

Perhatikan bahwa

begin mathsize 14px style f open parentheses x close parentheses equals fraction numerator open parentheses x squared minus 4 close parentheses to the power of 5 open parentheses x squared minus 6 x plus 8 close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction f open parentheses x close parentheses equals fraction numerator open parentheses open parentheses x minus 2 close parentheses open parentheses x plus 2 close parentheses close parentheses to the power of 5 open parentheses open parentheses x minus 2 close parentheses open parentheses x minus 4 close parentheses close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction f open parentheses x close parentheses equals fraction numerator open parentheses open parentheses x minus 2 close parentheses open parentheses x plus 2 close parentheses close parentheses to the power of 5 open parentheses open parentheses x minus 2 close parentheses open parentheses x minus 4 close parentheses close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction f open parentheses x close parentheses equals fraction numerator open parentheses x minus 2 close parentheses to the power of 5 open parentheses x plus 2 close parentheses to the power of 5 open parentheses x minus 2 close parentheses squared open parentheses x minus 4 close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction f open parentheses x close parentheses equals fraction numerator open parentheses x minus 2 close parentheses to the power of 7 open parentheses x plus 2 close parentheses to the power of 5 open parentheses x minus 4 close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction end style      

Perhatikan bahwa fungsi f(x) memiliki penyebut = 0 jika x = 2.

Perhatikan bahwa

begin mathsize 14px style limit as x rightwards arrow 2 to the power of plus of invisible function application fraction numerator open parentheses x minus 2 close parentheses to the power of 7 open parentheses x plus 2 close parentheses to the power of 5 open parentheses x minus 4 close parentheses squared over denominator open parentheses x minus 2 close parentheses to the power of n end fraction equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses open parentheses x plus 2 close parentheses to the power of 5 open parentheses x minus 4 close parentheses squared close parentheses equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times open parentheses 2 plus 2 close parentheses to the power of 5 times open parentheses 2 minus 4 close parentheses squared equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 5 times open parentheses negative 2 close parentheses squared equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 5 times 4 equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 6 end style    

 

Jika n < 7, maka 7 - n > 0, sehingga

begin mathsize 14px style limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 6 equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 minus n end exponent v 4 to the power of 6 equals open parentheses 2 minus 2 close parentheses to the power of 7 minus n end exponent times 4 to the power of 6 equals 0 to the power of 7 minus n end exponent times 4 to the power of 6 equals 0 end style    

Maka untuk n < 7, f(x) tidak memiliki asimtot tegak.

 

Selanjutnya jika n = 7, maka

begin mathsize 14px style limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 6 equals limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of 7 times 4 to the power of 6 equals limit as x rightwards arrow 2 to the power of plus of invisible function application 4 to the power of 6 equals 4 to the power of 6 end style    

Maka untuk n = 7, f(x) tidak memiliki asimtot tegak.

 

Kemudian jika n > 7, maka n - 7 > 0 , sehingga

begin mathsize 14px style limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses x minus 2 close parentheses to the power of 7 over open parentheses x minus 2 close parentheses to the power of n times 4 to the power of 6 equals limit as x rightwards arrow 2 to the power of plus of invisible function application 1 over open parentheses x minus 2 close parentheses to the power of n minus 7 end exponent times 4 to the power of 6 equals infinity times 4 to the power of 6 equals infinity end style      

Maka untuk n > 7, f(x) memiliki asimtot tegak yaitu x = 2.

Karena n adalah bilangan bulat, maka n terkecil yang mungkin sehingga f(x)  memiliki asimtot tegak adalah n = 8.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Asimtot tegak dari fungsi adalah ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia