Iklan

Pertanyaan

Jika dan , maka nilai dari x → ∞ lim ​ det ( A ) det ( B ) ​ adalah ....

Jika begin mathsize 14px style straight A equals open square brackets table row 0 cell cotan blank open parentheses 1 over x close parentheses end cell row cell negative 1 end cell 0 end table close square brackets end style dan begin mathsize 14px style straight B equals open square brackets table row cell 1 over x squared cosec blank open parentheses 1 over x close parentheses space end cell 0 row 0 x end table close square brackets end style,

maka nilai dari  adalah .... 

  1. begin mathsize 14px style negative infinity end style undefined 

  2. begin mathsize 14px style negative 1 end style undefined 

  3. begin mathsize 14px style 0 end style undefined 

  4. begin mathsize 14px style 1 end style undefined 

  5. begin mathsize 14px style infinity end style undefined 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

05

:

12

:

05

Klaim

Iklan

F. Kurnia

Master Teacher

Mahasiswa/Alumni Universitas Jember

Jawaban terverifikasi

Pembahasan

Diketahui maka didapat Selanjutnya diketahui maka didapat Sehingga didapat Misalkan . Jika maka . Oleh karena itu didapat Dengan demikian, nilai dari adalah 0. Jadi, jawaban yang tepat adalah C. Untuk mempelajarinya lebih jelas, tonton video selanjutnya.

Diketahui begin mathsize 14px style straight A equals open square brackets table row 0 cell cotan open parentheses 1 over x close parentheses end cell row cell negative 1 end cell 0 end table close square brackets end style 

maka didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell det left parenthesis straight A right parenthesis end cell equals cell 0 times 0 minus cotan open parentheses 1 over x close parentheses times left parenthesis negative 1 right parenthesis end cell row blank equals cell 0 plus cotan open parentheses 1 over x close parentheses end cell row blank equals cell cotan open parentheses 1 over x close parentheses end cell end table end style  

Selanjutnya diketahui begin mathsize 14px style straight B equals open square brackets table row cell 1 over x squared cosec open parentheses 1 over x close parentheses end cell 0 row 0 x end table close square brackets end style 

maka didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell det left parenthesis straight B right parenthesis end cell equals cell 1 over x squared cosec open parentheses 1 over straight x close parentheses times x minus 0 times 0 end cell row blank equals cell 1 over x cosec open parentheses 1 over straight x close parentheses minus 0 end cell row blank equals cell 1 over x cosec open parentheses 1 over straight x close parentheses end cell end table end style 

Sehingga didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow infinity of fraction numerator det left parenthesis straight B right parenthesis over denominator det left parenthesis straight A right parenthesis end fraction end cell equals cell limit as x rightwards arrow infinity of fraction numerator begin display style 1 over straight x end style cosec open parentheses begin display style 1 over x end style close parentheses over denominator cotan open parentheses begin display style 1 over straight x end style close parentheses end fraction end cell end table end style 

Misalkan begin mathsize 14px style y equals 1 over x end style.

Jika begin mathsize 14px style x rightwards arrow infinity end style maka begin mathsize 14px style y rightwards arrow 0 end style.

Oleh karena itu didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow infinity of fraction numerator det left parenthesis straight B right parenthesis over denominator det left parenthesis straight A right parenthesis end fraction end cell equals cell limit as x rightwards arrow infinity of fraction numerator begin display style 1 over x end style cosec open parentheses begin display style 1 over x end style close parentheses over denominator cotan open parentheses begin display style 1 over x end style close parentheses end fraction end cell row blank equals cell limit as y rightwards arrow 0 of fraction numerator begin display style y space cosec open parentheses y close parentheses end style over denominator cotan open parentheses y close parentheses end fraction end cell row blank equals cell limit as y rightwards arrow 0 of fraction numerator begin display style y times fraction numerator 1 over denominator sin open parentheses straight y close parentheses end fraction end style over denominator begin display style fraction numerator cos left parenthesis y right parenthesis over denominator sin left parenthesis y right parenthesis end fraction end style end fraction end cell row blank equals cell limit as y rightwards arrow 0 of open parentheses y times fraction numerator 1 over denominator sin open parentheses straight y close parentheses end fraction times fraction numerator sin left parenthesis y right parenthesis over denominator cos left parenthesis y right parenthesis end fraction close parentheses end cell row blank equals cell limit as y rightwards arrow 0 of open parentheses fraction numerator y over denominator cos left parenthesis y right parenthesis end fraction close parentheses end cell row blank equals cell fraction numerator 0 over denominator cos left parenthesis 0 right parenthesis end fraction end cell row blank equals cell 0 over 1 end cell row blank equals 0 end table end style 

Dengan demikian, nilai dari begin mathsize 14px style limit as x rightwards arrow infinity of invisible function application fraction numerator det invisible function application straight B over denominator det invisible function application straight A end fraction end style adalah 0.

Jadi, jawaban yang tepat adalah C.undefined 

Untuk mempelajarinya lebih jelas, tonton video selanjutnya.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

14

Iklan

Pertanyaan serupa

Misalkan fungsi f memenuhi untuk setiap x ∈ R . Jika ∫ 1 4 ​ f ( x ) d x = 4 dan ∫ − 4 − 3 ​ f ( x ) d x = − 1 ,maka nilai dari ∫ 4 12 ​ f ( x ) d x adalah ....

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia