Iklan

Iklan

Pertanyaan

Jika L , K adalah bilangan real dan x → c lim ​ f ( x ) = L , x → c lim ​ g ( x ) = K maka tentukan x → c lim ​ f 2 ( x ) + L 2 f 2 ( x ) − L 2 ​ !

Jika ,  adalah bilangan real dan, maka tentukan !

Iklan

S. Nur

Master Teacher

Jawaban terverifikasi

Jawaban

.

 begin mathsize 14px style limit as x rightwards arrow c of fraction numerator f squared open parentheses x close parentheses minus L squared over denominator f squared open parentheses x close parentheses plus L squared end fraction equals 0 end style

Iklan

Pembahasan

Pembahasan
lock

Dengan menggunakan sifat berikut: 1. ; 2. ; 3. ; dan 4. . maka diperoleh: Dengan demikian, .

Dengan menggunakan sifat berikut:

1. begin mathsize 14px style limit as x rightwards arrow c of fraction numerator f left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction equals fraction numerator limit as x rightwards arrow c of f left parenthesis x right parenthesis over denominator limit as x rightwards arrow c of g left parenthesis x right parenthesis end fraction end style;  

2. begin mathsize 14px style limit as x rightwards arrow c of open parentheses f left parenthesis x right parenthesis plus-or-minus g left parenthesis x right parenthesis close parentheses equals limit as x rightwards arrow c of f left parenthesis x right parenthesis plus-or-minus limit as x rightwards arrow c of g left parenthesis x right parenthesis end style

3. begin mathsize 14px style limit as x rightwards arrow c of f to the power of n left parenthesis x right parenthesis equals open parentheses limit as x rightwards arrow c of f left parenthesis x right parenthesis close parentheses to the power of n end style; dan

4. begin mathsize 14px style limit as x rightwards arrow c of k equals k end style.

maka diperoleh:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow c of fraction numerator f squared open parentheses x close parentheses minus L squared over denominator f squared open parentheses x close parentheses plus L squared end fraction end cell equals cell fraction numerator limit as x rightwards arrow c of open parentheses f squared open parentheses x close parentheses minus L squared close parentheses over denominator limit as x rightwards arrow c of open parentheses f squared open parentheses x close parentheses plus L squared close parentheses end fraction end cell row blank equals cell fraction numerator limit as x rightwards arrow c of f squared open parentheses x close parentheses minus limit as x rightwards arrow c of L squared over denominator limit as x rightwards arrow c of f squared open parentheses x close parentheses plus limit as x rightwards arrow c of L squared end fraction end cell row blank equals cell fraction numerator open parentheses limit as x rightwards arrow c of f left parenthesis x right parenthesis close parentheses squared minus open parentheses limit as x rightwards arrow c of L close parentheses squared over denominator open parentheses limit as x rightwards arrow c of f left parenthesis x right parenthesis close parentheses squared plus open parentheses limit as x rightwards arrow c of L close parentheses squared end fraction end cell row blank equals cell fraction numerator L squared minus L squared over denominator L squared plus L squared end fraction end cell row blank equals cell fraction numerator 0 over denominator 2 L squared end fraction end cell row blank equals 0 row blank blank blank row blank blank blank row blank blank blank row blank blank blank end table end style 

Dengan demikian, begin mathsize 14px style limit as x rightwards arrow c of fraction numerator f squared open parentheses x close parentheses minus L squared over denominator f squared open parentheses x close parentheses plus L squared end fraction equals 0 end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

16

nanda kesya pasaribu

Pembahasan tidak menjawab soal

Iklan

Iklan

Pertanyaan serupa

x → 2 lim ​ 12 x + 1 5 x − 1 ​ ​ = . . .

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia