Iklan

Pertanyaan

Invers matriks A = ( − 2 1 ​ − 5 3 ​ ) adalah A − 1 = ...

Invers matriks  adalah 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

18

:

42

:

55

Klaim

Iklan

N. Puspita

Master Teacher

Jawaban terverifikasi

Jawaban

Invers matriks adalah .

 Invers matriks A equals open parentheses table row cell negative 2 end cell cell negative 5 end cell row 1 3 end table close parentheses adalah table attributes columnalign right center left columnspacing 0px end attributes row blank blank A end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell blank to the power of negative 1 end exponent end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses table row cell negative 3 end cell cell negative 5 end cell row 1 2 end table close parentheses end cell end table.

Pembahasan

Pembahasan
lock

Jadi,Invers matriks adalah .

table attributes columnalign right center left columnspacing 0px end attributes row cell A to the power of negative 1 end exponent end cell equals cell fraction numerator 1 over denominator a d minus b c end fraction open parentheses table row d cell negative b end cell row cell negative c end cell a end table close parentheses end cell row blank equals cell fraction numerator 1 over denominator negative 2 times 3 times negative open parentheses negative 5 close parentheses open parentheses 1 close parentheses end fraction open parentheses table row 3 cell negative left parenthesis negative 5 right parenthesis end cell row cell negative 1 end cell cell negative 2 end cell end table close parentheses end cell row blank equals cell fraction numerator 1 over denominator negative 6 plus 5 end fraction open parentheses table row 3 5 row cell negative 1 end cell cell negative 2 end cell end table close parentheses end cell row blank equals cell fraction numerator 1 over denominator negative 1 end fraction open parentheses table row 3 5 row cell negative 1 end cell cell negative 2 end cell end table close parentheses end cell row blank equals cell negative 1 open parentheses table row 3 cell space space 5 end cell row cell negative 1 end cell cell negative 2 end cell end table close parentheses end cell row cell A to the power of negative 1 end exponent end cell equals cell open parentheses table row cell negative 3 end cell cell negative 5 end cell row 1 2 end table close parentheses end cell end table

Jadi, Invers matriks A equals open parentheses table row cell negative 2 end cell cell negative 5 end cell row 1 3 end table close parentheses adalah table attributes columnalign right center left columnspacing 0px end attributes row blank blank A end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell blank to the power of negative 1 end exponent end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses table row cell negative 3 end cell cell negative 5 end cell row 1 2 end table close parentheses end cell end table.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

8

Iklan

Pertanyaan serupa

Diketahui matriks A = ( a 5 ​ a + 4 a + 1 ​ ) dengan a ≥ 0 . Jika determinan A dengan 1 ,maka invers dari A = A − 1 = ....

7

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia