Iklan

Pertanyaan

Fungsi f ( x ) = s i n 2 x dengan 0 < x < π cekung ke bawah pada interval ....

Fungsi   dengan 0 < π  cekung ke bawah pada interval ....

  1. begin mathsize 14px style straight pi over 4 space less than space x space less than space fraction numerator 2 straight pi over denominator 4 end fraction end style 

  2. begin mathsize 14px style straight pi over 4 space less than space x space less than space fraction numerator 3 straight pi over denominator 4 end fraction semicolon space x space not equal to fraction numerator 2 straight pi over denominator 4 end fraction end style 

  3. begin mathsize 14px style straight pi over 4 space less than space x space less than space fraction numerator 4 straight pi over denominator 4 end fraction semicolon space x space not equal to fraction numerator 2 straight pi over denominator 4 end fraction end style 

  4. begin mathsize 14px style fraction numerator 2 straight pi over denominator 4 end fraction space less than space x space less than space fraction numerator 3 straight pi over denominator 4 end fraction end style 

  5. begin mathsize 14px style fraction numerator 2 straight pi over denominator 4 end fraction space less than space x space less than space fraction numerator 4 straight pi over denominator 4 end fraction end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

00

:

12

:

13

Klaim

Iklan

H. Nufus

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

Fungsi cekung ke bawah saat .Maka selanjutnya kita cari turunan kedua dari f(x). sehingga cos 2x bernilai negatif di kuadran II dan III. Perlu diingat bahwa, fungsi f(x) didefinisikan dengan sehingga kita peroleh interval yang dimaksud atau kita dapat tuliskan

Fungsi begin mathsize 14px style f space left parenthesis x right parenthesis space equals space sin squared space x space end stylecekung ke bawah saat begin mathsize 14px style f " space left parenthesis x right parenthesis space less than space 0 end style. Maka selanjutnya kita cari turunan kedua dari f(x).

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell f space left parenthesis x right parenthesis space end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank sin end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell blank squared end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell f apostrophe space left parenthesis x right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 2 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank sin end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell f apostrophe space left parenthesis x right parenthesis space end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank sin end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 2 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell f apostrophe apostrophe space left parenthesis x right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 2 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 2 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table end style      

sehingga

table attributes columnalign right center left columnspacing 0px end attributes row cell size 14px space size 14px space size 14px space size 14px space size 14px space size 14px space size 14px space size 14px f size 14px " size 14px space size 14px left parenthesis size 14px x size 14px right parenthesis size 14px space end cell size 14px less than size 14px 0 row cell size 14px space size 14px 2 size 14px space size 14px cos size 14px space size 14px space size 14px 2 size 14px x size 14px space end cell size 14px less than cell size 14px space size 14px 0 size 14px space end cell row cell size 14px space size 14px space size 14px space size 14px space size 14px space size 14px cos size 14px space size 14px 2 size 14px x size 14px space end cell size 14px less than cell size 14px space size 14px 0 end cell end table  

cos 2x  bernilai negatif di kuadran II dan III. Perlu diingat bahwa, fungsi f(x) didefinisikan dengan begin mathsize 14px style 0 space less than space x space less than space straight pi end style  sehingga kita peroleh interval yang dimaksud

Error converting from MathML to accessible text.     

atau kita dapat tuliskan

begin mathsize 14px style straight pi over 4 less than space x space less than space fraction numerator 3 straight pi over denominator 4 end fraction semicolon space x not equal to fraction numerator begin display style 2 straight pi end style over denominator begin display style 4 end style end fraction end style 
 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

5

Iklan

Pertanyaan serupa

Jika f ( t ) = sin 3 4 t − ( 4 t 2 − 2 t + 4 ) ,maka nilai dari f ( 12 π ​ ) adalah ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia