Terlebih dahulu tentukan pusat dan jari-jari masing-masing lingkaran.
Untuk
, didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight P subscript 1 end cell equals cell left parenthesis negative 4 , space 4 right parenthesis end cell row cell r subscript 1 end cell equals 1 end table end style]()
Untuk
, didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight P subscript 2 end cell equals cell left parenthesis negative 7 comma space 5 right parenthesis end cell row cell r subscript 2 end cell equals 2 end table end style]()
Kemudian, perhatikan perhitungan berikut!
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight P subscript 1 straight P subscript 2 end cell equals cell square root of left parenthesis negative 7 plus 4 right parenthesis squared plus left parenthesis 5 minus 4 right parenthesis squared end root end cell row blank equals cell square root of 9 plus 1 end root end cell row blank equals cell square root of 10 end cell end table end style]()
dan
![begin mathsize 14px style r subscript 1 plus r subscript 2 equals 1 plus 2 equals 3 end style]()
Karena
, maka dapat disimpulkan bahwa
dan
saling lepas di luar. Oleh karena itu, akan terdapat 3 atau 4 persamaan garis singgung persekutuan kedua lingkaran tersebut.
Perhatikan bahwa jarak titik pusat ke garis singgung akan sama dengan jari-jari dari masing-masing lingkaran.
Jarak titik
yaitu
ke garis singgung
adalah sebagai berikut.
![begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 1 open parentheses 4 close parentheses minus m open parentheses negative 4 close parentheses minus c over denominator square root of open parentheses negative m close parentheses squared plus 1 squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell 4 plus 4 m minus c end cell equals cell plus-or-minus square root of 1 plus m squared end root end cell row cell negative c end cell equals cell plus-or-minus square root of 1 plus m squared end root minus 4 minus 4 m blank horizontal ellipsis space left parenthesis 1 right parenthesis end cell end table end style]()
Selanjutnya, jarak titik
yaitu
ke garis singgung
adalah sebagai berikut.
![begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 1 open parentheses 5 close parentheses minus m open parentheses negative 7 close parentheses minus c over denominator square root of open parentheses negative m close parentheses squared plus 1 squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell 5 plus 7 m minus c end cell equals cell plus-or-minus 2 square root of 1 plus m squared end root end cell row cell negative c end cell equals cell plus-or-minus 2 square root of 1 plus m squared end root minus 5 minus 7 m space horizontal ellipsis space left parenthesis 2 right parenthesis end cell end table end style]()
Kemudian, substitusi persamaan (1) ke persamaan (2) di atas.
Dari bentuk di atas, terdapat 4 kemungkinan, yaitu sebagai berikut.
Kemungkinan 1.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell square root of 1 plus m squared end root minus 4 minus 4 m end cell equals cell 2 square root of 1 plus m squared end root minus 5 minus 7 m end cell row cell square root of 1 plus m squared end root minus 2 square root of 1 plus m squared end root end cell equals cell 4 plus 4 m minus 5 minus 7 m end cell row cell negative square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell end table end style]()
Kemungkinan 2.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell square root of 1 plus m squared end root minus 4 minus 4 m end cell equals cell negative 2 square root of 1 plus m squared end root minus 5 minus 7 m end cell row cell square root of 1 plus m squared end root plus 2 square root of 1 plus m squared end root end cell equals cell 4 plus 4 m minus 5 minus 7 m end cell row cell 3 square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell end table end style]()
Kemungkinan 3.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative square root of 1 plus m squared end root minus 4 minus 4 m end cell equals cell 2 square root of 1 plus m squared end root minus 5 minus 7 m end cell row cell negative square root of 1 plus m squared end root minus 2 square root of 1 plus m squared end root end cell equals cell 4 plus 4 m minus 5 minus 7 m end cell row cell negative 3 square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell end table end style]()
Kemungkinan 4.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative square root of 1 plus m squared end root minus 4 minus 4 m end cell equals cell negative 2 square root of 1 plus m squared end root minus 5 minus 7 m end cell row cell negative square root of 1 plus m squared end root plus 2 square root of 1 plus m squared end root end cell equals cell 4 plus 4 m minus 5 minus 7 m end cell row cell square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell end table end style]()
Dari 4 kemungkinan di atas, dapat disederhanakn menjadi 2, yaitu sebagai berikut.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell plus-or-minus 3 square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell row cell plus-or-minus square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell end table end style]()
Kemungkinan 1.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell plus-or-minus 3 square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell row cell open parentheses plus-or-minus 3 square root of 1 plus m squared end root close parentheses squared end cell equals cell left parenthesis negative 3 m minus 1 right parenthesis squared end cell row cell 9 open parentheses 1 plus m squared close parentheses end cell equals cell 9 m squared plus 6 m plus 1 end cell row cell 9 plus 9 m squared end cell equals cell 9 m squared plus 6 m plus 1 end cell row 9 equals cell 6 m plus 1 end cell row 8 equals cell 6 m end cell row cell 4 over 3 end cell equals m end table end style]()
Kemungkinan 2.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell plus-or-minus square root of 1 plus m squared end root end cell equals cell negative 3 m minus 1 end cell row cell open parentheses plus-or-minus square root of 1 plus m squared end root close parentheses squared end cell equals cell left parenthesis negative 3 m minus 1 right parenthesis squared end cell row cell 1 plus m squared end cell equals cell 9 m squared plus 6 straight m plus 1 end cell row cell 8 m squared plus 6 m end cell equals 0 row cell 2 m left parenthesis 4 m plus 3 right parenthesis end cell equals 0 row m equals cell 0 blank atau blank m equals negative 3 over 4 end cell end table end style]()
Untuk
, didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell plus-or-minus square root of 1 plus open parentheses 4 over 3 close parentheses squared end root minus 4 minus 4 open parentheses 4 over 3 close parentheses end cell row blank equals cell plus-or-minus square root of 1 plus 16 over 9 end root minus 4 minus 16 over 3 end cell row blank equals cell plus-or-minus square root of 25 over 9 end root minus 28 over 3 end cell row blank equals cell plus-or-minus 5 over 3 minus 28 over 3 end cell end table end style]()
Dari bentuk di atas didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell 5 over 3 minus 28 over 3 end cell row cell negative c end cell equals cell negative 23 over 3 end cell row c equals cell 23 over 3 end cell end table end style]()
atau
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell negative 5 over 3 minus 28 over 3 end cell row cell negative c end cell equals cell negative 11 end cell row c equals 11 end table end style]()
Untuk
, didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell plus-or-minus square root of 1 plus 0 squared end root minus 4 minus 4 open parentheses 0 close parentheses end cell row blank equals cell plus-or-minus square root of 1 minus 4 minus 0 end cell row blank equals cell plus-or-minus 1 minus 4 end cell end table end style]()
Dari bentuk di atas didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell 1 minus 4 end cell row cell negative c end cell equals cell negative 3 end cell row c equals 3 end table end style]()
atau
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell negative 1 minus 4 end cell row cell negative c end cell equals cell negative 5 end cell row c equals 5 end table end style]()
Untuk
, didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell plus-or-minus square root of 1 plus open parentheses negative 3 over 4 close parentheses squared end root minus 4 minus 4 open parentheses negative 3 over 4 close parentheses end cell row blank equals cell plus-or-minus square root of 1 plus 9 over 16 end root minus 4 plus 3 end cell row blank equals cell plus-or-minus square root of 25 over 16 end root minus 1 end cell row blank equals cell plus-or-minus 5 over 4 minus 1 end cell end table end style]()
Dari bentuk di atas didapat
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell 5 over 4 minus 1 end cell row cell negative c end cell equals cell 1 fourth end cell row c equals cell negative 1 fourth end cell end table end style]()
atau
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative c end cell equals cell negative 5 over 4 minus 1 end cell row cell negative c end cell equals cell negative 9 over 4 end cell row c equals cell 9 over 4 end cell end table end style]()
Jadi kita peroleh 6 pasangan
dan
, yaitu sebagai berikut.
dan ![undefined]()
dan ![undefined]()
dan ![undefined]()
dan ![undefined]()
dan ![undefined]()
dan ![begin mathsize 14px style c equals 9 over 4 end style]()
Cek untuk nilai
dan
apakah memenuhi atau tidak.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 open parentheses 4 over 3 close parentheses minus begin display style 23 over 3 end style over denominator square root of 1 plus open parentheses 4 over 3 close parentheses squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 5 over denominator begin display style 5 over 3 end style end fraction close vertical bar end cell equals 1 row cell vertical line 3 vertical line end cell equals cell 1 blank left parenthesis bold SALAH right parenthesis end cell row blank blank blank row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 open parentheses 4 over 3 close parentheses minus begin display style 23 over 3 end style over denominator square root of 1 plus open parentheses 4 over 3 close parentheses squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator begin display style 20 over 3 end style over denominator begin display style 5 over 3 end style end fraction close vertical bar end cell equals 2 row cell vertical line 4 vertical line end cell equals cell 2 blank left parenthesis bold SALAH right parenthesis end cell end table end style]()
Karena keduanya salah, maka pasangan nilai
dan
TIDAK MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Cek untuk nilai
dan
apakah memenuhi atau tidak.
Karena keduanya benar, maka pasangan nilai
dan
MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Cek untuk nilai
dan
apakah memenuhi atau tidak.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 open parentheses 0 close parentheses minus 3 over denominator square root of 1 plus 0 squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar 1 close vertical bar end cell equals cell 1 blank open parentheses bold BENAR close parentheses end cell row blank blank blank row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 open parentheses 0 close parentheses minus 3 over denominator square root of 1 plus 0 squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar 2 close vertical bar end cell equals cell 2 blank open parentheses bold BENAR close parentheses end cell row blank blank blank end table end style]()
Karena keduanya benar, maka pasangan nilai
dan
MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Cek untuk nilai
dan
apakah memenuhi atau tidak.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 open parentheses 0 close parentheses minus 5 over denominator square root of 1 plus 0 squared end root end fraction close vertical bar end cell equals 1 row cell vertical line minus 1 vertical line end cell equals cell 1 blank left parenthesis bold BENAR right parenthesis end cell row blank blank blank row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 open parentheses 0 close parentheses minus 5 over denominator square root of 1 plus 0 squared end root end fraction close vertical bar end cell equals 2 row cell vertical line 0 vertical line end cell equals cell 2 blank left parenthesis bold SALAH right parenthesis end cell end table end style]()
Karena hanya salah satu saja yang bernilai benar, maka pasangan nilai
dan
TIDAK MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Cek untuk nilai
dan
apakah memenuhi atau tidak.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 open parentheses negative 3 over 4 close parentheses plus 1 fourth over denominator square root of 1 plus open parentheses negative 3 over 4 close parentheses squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar vertical line fraction numerator 5 over 4 over denominator begin display style 5 over 4 end style end fraction vertical line close vertical bar end cell equals 1 row cell vertical line 1 vertical line end cell equals cell 1 blank left parenthesis bold BENAR right parenthesis end cell row blank blank blank row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 open parentheses negative 3 over 4 close parentheses plus 1 fourth over denominator square root of 1 plus open parentheses negative 3 over 4 close parentheses squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar 0 close vertical bar end cell equals cell 2 blank left parenthesis bold SALAH right parenthesis end cell end table end style]()
Karena hanya salah satu saja yang bernilai benar, maka pasangan nilai
dan
TIDAK MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Cek untuk nilai
dan
apakah memenuhi atau tidak.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar fraction numerator 4 plus 4 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar fraction numerator 4 plus 4 open parentheses negative 3 over 4 close parentheses minus 9 over 4 over denominator square root of 1 plus open parentheses negative 3 over 4 close parentheses squared end root end fraction close vertical bar end cell equals 1 row cell open vertical bar negative 1 close vertical bar end cell equals cell 1 blank open parentheses bold BENAR close parentheses end cell row blank blank blank row cell open vertical bar fraction numerator 5 plus 7 m minus c over denominator square root of 1 plus m squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar fraction numerator 5 plus 7 open parentheses negative 3 over 4 close parentheses minus 9 over 4 over denominator square root of 1 plus open parentheses negative 3 over 4 close parentheses squared end root end fraction close vertical bar end cell equals 2 row cell open vertical bar negative 2 close vertical bar end cell equals cell 2 blank open parentheses bold BENAR close parentheses end cell row blank blank blank end table end style]()
Karena keduanya benar, maka pasangan nilai
dan
MEMENUHI persamaan garis singgung persekutuan yang diinginkan.
Jadi diperoleh 3 pasangan nilai
dan
yang memenuhi, yaitu sebagai berikut.
dan ![begin mathsize 14px style c equals 11 end style]()
dan ![begin mathsize 14px style c equals 3 end style]()
dan ![begin mathsize 14px style c equals 9 over 4 end style]()
Untuk
dan
, didapat persamaan sebagai berikut.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell m x plus c end cell row y equals cell 4 over 3 x plus 11 end cell row cell 3 y end cell equals cell 4 x plus 33 end cell row blank blank blank row blank blank blank end table end style]()
Untuk
dan
, didapat persamaan sebagai berikut.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell m x plus c end cell row y equals 3 row blank blank blank end table end style]()
Untuk
dan
, didapat persamaan sebagai berikut.
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell m x plus c end cell row y equals cell negative 3 over 4 x plus 9 over 4 end cell row cell 4 y end cell equals cell negative 3 x plus 9 end cell end table end style]()
Perhatikan gambar berikut!
Dengan demikian, persamaan garis singgung persekutuan kedua lingkaran tersebut adalah
![begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell table row cell 3 y equals 4 x plus 33 end cell cell... space open parentheses 1 close parentheses end cell row cell y equals 3 end cell cell... space open parentheses 2 close parentheses end cell row cell 4 y equals negative 3 x plus 9 end cell cell... space open parentheses 3 close parentheses end cell end table end cell end table end style]()
Berdasarkan pilihan jawaban di atas, salah satu persamaan garis singgung persekutuan dua lingkaran tersebut adalah
.
Jadi, jawaban yang tepat adalah C.