Iklan

Pertanyaan

Diketahui Jika limit fungsi terdefinisi untuk x = − 1 dan x = 2 , maka m + n = ....

Diketahui

begin mathsize 14px style f open parentheses x close parentheses equals open curly brackets table row cell 2 x comma end cell cell x less than negative 1 end cell row cell x squared plus m comma end cell cell negative 1 less or equal than x less than 2 end cell row cell 3 x plus n comma end cell cell x greater or equal than 2 end cell end table close end style

Jika limit fungsi terdefinisi untuk dan , maka ....

  1. begin mathsize 14px style 4 end style

  2. begin mathsize 14px style 2 end style

  3. begin mathsize 14px style negative 3 end style

  4. begin mathsize 14px style negative 5 end style

  5. begin mathsize 14px style negative 8 end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

09

:

56

:

43

Klaim

Iklan

S. Nur

Master Teacher

Jawaban terverifikasi

Pembahasan

Karena limit fungsi terdefinisi untuk , maka Kemudian, karena limit fungsi terdefinisi untuk , maka Sehingga . Maka, jawaban yang tepat adalah E.

Karena limit fungsi terdefinisi untuk begin mathsize 14px style x equals negative 1 end style, maka

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow negative 1 to the power of minus of invisible function application f open parentheses x close parentheses end cell equals cell limit as x rightwards arrow negative 1 to the power of plus of invisible function application f open parentheses x close parentheses end cell row cell limit as x rightwards arrow negative 1 to the power of minus of invisible function application 2 x end cell equals cell limit as x rightwards arrow negative 1 to the power of plus of invisible function application open parentheses x squared plus m close parentheses end cell row cell 2 open parentheses negative 1 close parentheses end cell equals cell open parentheses negative 1 close parentheses squared plus m end cell row cell negative 2 end cell equals cell 1 plus m end cell row m equals cell negative 3 end cell end table end style

 

Kemudian, karena limit fungsi terdefinisi untuk begin mathsize 14px style x equals 2 end style, maka

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow 2 to the power of minus of invisible function application f open parentheses x close parentheses end cell equals cell limit as x rightwards arrow 2 to the power of plus of invisible function application f open parentheses x close parentheses end cell row cell limit as x rightwards arrow 2 to the power of minus of invisible function application open parentheses x squared plus m close parentheses end cell equals cell limit as x rightwards arrow 2 to the power of plus of invisible function application open parentheses 3 x plus n close parentheses end cell row cell open parentheses 2 close parentheses squared plus m end cell equals cell 3 open parentheses 2 close parentheses plus n end cell row cell 4 plus m end cell equals cell 6 plus n end cell row n equals cell m minus 2 end cell row n equals cell negative 3 minus 2 end cell row n equals cell negative 5 end cell end table end style

Sehingga begin mathsize 14px style m plus n equals negative 3 minus 5 equals negative 8 end style.

Maka, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Muhammad Athallah Akbar

Ini yang aku cari! Makasih ❤️ Bantu banget

Iklan

Pertanyaan serupa

Diketahui bahwa x → 0 lim ​ x 3 1 + x ​ − 1 ​ = 3 1 ​ . Taksiran nilai untuk adalah ....

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2026 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia