Iklan

Pertanyaan

Diketahui lim x → 0 ​ x 2 ax 2 + b ​ − 3 ​ = 4 1 ​ , maka nilai dari 3 a + b = ....

Diketahui  , maka nilai dari ....

  1. begin mathsize 14px style 27 over 2 end style 

  2. begin mathsize 14px style 21 over 2 end style 

  3. begin mathsize 14px style 18 over 2 end style 

  4. begin mathsize 14px style 15 over 2 end style 

  5. begin mathsize 14px style 9 over 2 end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

07

:

52

:

32

Klaim

Iklan

R. RGFLSATU

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah A.

jawaban yang tepat adalah A.

Pembahasan

Perhatikan bahwa jika dilakukan substitusi x = 0 , maka didapatkan hasil Didapat bentuk limit yang jika dilakukan substitusi x = 0 , maka penyebutnya bernilai 0. Tetapi, nilai limitnya ada. Maka haruslah pembilangnya juga bernilai 0 jika disubstitusi x = 0 . Sehingga Maka didapat bahwa Sehingga Jadi, jawaban yang tepat adalah A.

Perhatikan bahwa jika dilakukan substitusi = 0, maka didapatkan hasil

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell fraction numerator square root of ax squared plus straight b end root minus 3 over denominator straight x squared end fraction end cell equals cell fraction numerator square root of straight a open parentheses 0 close parentheses squared plus straight b end root minus 3 over denominator 0 squared end fraction end cell row blank equals cell fraction numerator square root of 0 plus straight b end root minus 3 over denominator 0 end fraction end cell row blank equals cell fraction numerator square root of straight b minus 3 over denominator 0 end fraction end cell end table end style 

Didapat bentuk limit yang jika dilakukan substitusi = 0, maka penyebutnya bernilai 0. Tetapi, nilai limitnya ada.
Maka haruslah pembilangnya juga bernilai 0 jika disubstitusi = 0. Sehingga
begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell square root of straight b minus 3 end cell equals 0 row cell square root of straight b end cell equals 3 row straight b equals 9 end table end style 

Maka didapat bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as straight x rightwards arrow 0 of fraction numerator square root of ax squared plus 9 end root minus 3 over denominator straight x squared end fraction end cell equals cell 1 fourth end cell row cell limit as straight x rightwards arrow 0 of open parentheses fraction numerator square root of ax squared plus 9 end root minus 3 over denominator straight x squared end fraction times fraction numerator square root of ax squared plus 9 end root plus 3 over denominator square root of ax squared plus 9 end root plus 3 end fraction close parentheses end cell equals cell 1 fourth end cell row cell limit as straight x rightwards arrow 0 of fraction numerator open parentheses ax squared plus 9 close parentheses minus 9 over denominator straight x squared open parentheses square root of ax squared plus 9 end root plus 3 close parentheses end fraction end cell equals cell 1 fourth end cell row cell limit as straight x rightwards arrow 0 of fraction numerator ax squared over denominator straight x squared open parentheses square root of ax squared plus 9 end root plus 3 close parentheses end fraction end cell equals cell 1 fourth end cell row cell limit as straight x rightwards arrow 0 of fraction numerator straight a over denominator square root of ax squared plus 9 end root plus 3 end fraction end cell equals cell 1 fourth end cell row cell fraction numerator straight a over denominator square root of straight a open parentheses 0 close parentheses squared plus 9 end root plus 3 end fraction end cell equals cell 1 fourth end cell row cell fraction numerator straight a over denominator square root of 0 plus 9 end root plus 3 end fraction end cell equals cell 1 fourth end cell row cell fraction numerator straight a over denominator square root of 9 plus 3 end fraction end cell equals cell 1 fourth end cell row cell fraction numerator straight a over denominator 3 plus 3 end fraction end cell equals cell 1 fourth end cell row cell straight a over 6 end cell equals cell 1 fourth end cell row straight a equals cell 6 over 4 end cell row straight a equals cell 3 over 2 end cell end table end style 

Sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 3 straight a plus straight b end cell equals cell 3 open parentheses 3 over 2 close parentheses plus 9 end cell row blank equals cell 9 over 2 plus 9 end cell row blank equals cell 9 over 2 plus 18 over 2 end cell row blank equals cell 27 over 2 end cell end table end style 

Jadi, jawaban yang tepat adalah A.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Diketahui , maka nilai dari 2 p − q = ....

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia