Iklan

Pertanyaan

Jika maka nilai dari adalah ....

Jika

begin mathsize 14px style f open parentheses x close parentheses equals integral subscript 0 superscript x y e to the power of y blank d y end style

maka nilai dari begin mathsize 14px style f open parentheses 1 close parentheses minus f open parentheses 1 half close parentheses end style adalah ....

  1. begin mathsize 14px style 2 square root of e end style

  2. begin mathsize 14px style square root of 2 e end root end style

  3. begin mathsize 14px style square root of e end style

  4. begin mathsize 14px style square root of e over 2 end root end style

  5. begin mathsize 14px style fraction numerator square root of e over denominator 2 end fraction end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

10

:

23

:

13

Klaim

Iklan

L. Marlina

Master Teacher

Mahasiswa/Alumni Institut Teknologi Bandung

Jawaban terverifikasi

Pembahasan

Dari soal, diketahui Kita terapkan metode integral parsial pada bentuk integral di atas. Misalkan u = y dan , maka dan Sehingga Didapat Sehingga diperoleh

Dari soal, diketahui

begin mathsize 14px style f open parentheses x close parentheses equals integral subscript 0 superscript x y e to the power of y blank d y end style

Kita terapkan metode integral parsial pada bentuk integral di atas.

Misalkan u = y dan begin mathsize 14px style fraction numerator d v over denominator d y end fraction equals e to the power of y end style, maka

begin mathsize 14px style fraction numerator d u over denominator d y end fraction equals 1 end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row v equals cell integral fraction numerator d v over denominator d y end fraction d y end cell row blank equals cell integral e to the power of y d y end cell row blank equals cell e to the power of y plus C end cell end table end style

Sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses x close parentheses end cell equals cell integral subscript 0 superscript x y e to the power of y blank d y end cell row blank equals cell open y times e to the power of y close square brackets subscript 0 superscript x minus integral subscript 0 superscript x e to the power of y times 1 blank d x end cell row blank equals cell open parentheses x times e to the power of x minus 0 times e to the power of 0 close parentheses minus open e to the power of y close square brackets subscript 0 superscript x end cell row blank equals cell x times e to the power of x minus open parentheses e to the power of x minus e to the power of 0 close parentheses end cell row blank equals cell x e to the power of x minus e to the power of x plus 1 end cell end table end style

Didapat begin mathsize 14px style f open parentheses x close parentheses equals x e to the power of x minus e to the power of x plus 1 end style

Sehingga diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses 1 close parentheses minus f open parentheses 1 half close parentheses end cell equals cell open parentheses 1 times e to the power of 1 minus e to the power of 1 plus 1 close parentheses minus open parentheses 1 half times e to the power of 1 half end exponent minus e to the power of 1 half end exponent plus 1 close parentheses end cell row blank equals cell e minus e plus 1 minus fraction numerator square root of e over denominator 2 end fraction plus square root of e minus 1 end cell row blank equals cell fraction numerator square root of e over denominator 2 end fraction end cell end table end style    

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

7

Iklan

Pertanyaan serupa

Jika hasil dari dapat dinyatakan dalam bentuk , maka nilai dari P + Q + R = ….

1

3.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia