Iklan

Iklan

Pertanyaan

Diketahui R = ( − 5 − 2 ​ 3 1 ​ ) dan T = ( 1 1 ​ − 1 − 3 ​ ) . Invers matriks RT adalah ( T − 1 ⋅ R − 1 ) = ....

Diketahui  Invers matriks RT adalah   

  1. begin mathsize 14px style open parentheses table row cell 1 half end cell cell negative 2 end cell row cell negative 1 half end cell 1 end table close parentheses end style 

  2. begin mathsize 14px style open parentheses table row cell negative 1 half end cell cell negative 2 end cell row cell 1 half end cell 1 end table close parentheses end style 

  3. begin mathsize 14px style open parentheses table row 2 cell 1 half end cell row cell negative 1 end cell cell negative 1 half end cell end table close parentheses end style 

  4. begin mathsize 14px style open parentheses table row 2 cell negative 1 half end cell row cell negative 1 end cell cell 1 half end cell end table close parentheses end style 

  5. begin mathsize 14px style open parentheses table row 1 cell 1 half end cell row 2 cell negative 1 half end cell end table close parentheses end style 

Iklan

I. Sutiawan

Master Teacher

Mahasiswa/Alumni Universitas Pasundan

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah A

jawaban yang tepat adalah A

Iklan

Pembahasan

Diketahui Ingat! Invers matriks ordo dari adalah . Sifat invers matriks: Sehingga: Jadi, jawaban yang tepat adalah A

Diketahui begin mathsize 14px style R equals open parentheses table row cell negative 5 end cell 3 row cell negative 2 end cell 1 end table close parentheses space text dan  end text T equals open parentheses table row 1 cell negative 1 end cell row 1 cell negative 3 end cell end table close parentheses. end style 

Ingat!

  • Invers matriks ordo 2 cross times 2 dari A equals open parentheses table row a b row c d end table close parentheses adalah A to the power of negative 1 end exponent equals fraction numerator 1 over denominator a d minus b c end fraction open parentheses table row d cell negative b end cell row cell negative c end cell a end table close parentheses
  • Sifat invers matriks: open parentheses A. B close parentheses equals B to the power of negative 1 end exponent. A to the power of negative 1 end exponent

Sehingga:

 

table attributes columnalign right center left columnspacing 0px end attributes row cell R T end cell equals cell open parentheses table row cell negative 5 end cell 3 row cell negative 2 end cell 1 end table close parentheses. open parentheses table row 1 cell negative 1 end cell row 1 cell negative 3 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell negative 5 plus 3 end cell cell 5 plus left parenthesis negative 9 right parenthesis end cell row cell negative 2 plus 1 end cell cell 2 plus left parenthesis negative 3 right parenthesis end cell end table close parentheses end cell row blank equals cell open parentheses table row cell negative 5 plus 3 end cell cell 5 plus left parenthesis negative 9 right parenthesis end cell row cell negative 2 plus 1 end cell cell 2 plus left parenthesis negative 3 right parenthesis end cell end table close parentheses end cell row blank equals cell open parentheses table row cell negative 2 end cell cell negative 4 end cell row cell negative 1 end cell cell negative 1 end cell end table close parentheses end cell row blank blank blank row cell open parentheses T to the power of negative 1 end exponent. R to the power of negative 1 end exponent close parentheses end cell equals cell open parentheses R T close parentheses to the power of negative 1 end exponent end cell row blank equals cell fraction numerator 1 over denominator negative 2 cross times left parenthesis negative 1 right parenthesis minus left parenthesis negative 1 right parenthesis cross times left parenthesis negative 4 right parenthesis end fraction open parentheses table row cell negative 1 end cell 4 row 1 cell negative 2 end cell end table close parentheses end cell row blank equals cell fraction numerator 1 over denominator 2 minus 4 end fraction open parentheses table row cell negative 1 end cell 4 row 1 cell negative 2 end cell end table close parentheses end cell row blank equals cell negative 1 half open parentheses table row cell negative 1 end cell 4 row 1 cell negative 2 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell negative bevelled fraction numerator 1 over denominator negative 2 end fraction end cell cell bevelled fraction numerator 4 over denominator negative 2 end fraction end cell row cell bevelled fraction numerator negative 1 over denominator 2 end fraction end cell cell bevelled fraction numerator negative 2 over denominator negative 2 end fraction end cell end table close parentheses end cell row blank equals cell open parentheses table row cell bevelled 1 half end cell cell negative 2 end cell row cell bevelled fraction numerator negative 1 over denominator 2 end fraction end cell 1 end table close parentheses end cell end table

Jadi, jawaban yang tepat adalah A

Latihan Bab

Konsep Kilat

Pengertian Matriks

Operasi Hitung Matriks

Invers Matriks

465

Freynt Ginting

Ini yang aku cari!

Iklan

Iklan

Pertanyaan serupa

Tentukan invers dari matriks A= ( 6 3 ​ − 7 − 4 ​ ) !

138

0.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia