Iklan

Pertanyaan

Diberikan ∫ f − 1 ( x ) d x = 4 1 ​ x 2 − 2 1 ​ x + C 1 ​ , dan . Hasil dari adalah ...

Diberikan , dan begin mathsize 14px style g to the power of negative 1 end exponent open parentheses x close parentheses equals square root of 1 third left parenthesis x plus 1 right parenthesis end root blank text untuk end text blank x greater than negative 1 end style. Hasil dari begin mathsize 14px style integral open parentheses open parentheses f ring operator g close parentheses open parentheses x close parentheses close parentheses to the power of negative 2 end exponent times x blank d x end style adalah ...

  1. begin mathsize 14px style 12 open parentheses 6 x squared minus 1 close parentheses to the power of negative 1 end exponent plus C end style

  2. begin mathsize 14px style negative 12 open parentheses 6 x squared minus 1 close parentheses plus C end style

  3. begin mathsize 14px style negative 12 left parenthesis 6 x squared minus 1 right parenthesis to the power of negative 1 end exponent plus C end style

  4. begin mathsize 14px style negative 1 over 12 left parenthesis 6 x squared minus 1 right parenthesis to the power of negative 1 end exponent plus C end style

  5. begin mathsize 14px style blank minus 1 over 12 open parentheses 6 x squared minus 1 close parentheses plus C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

14

:

59

:

08

Klaim

Iklan

R. RGFLSATU

Master Teacher

Jawaban terverifikasi

Pembahasan

Pertama, perhatikan perhitungan berikut Kemudian, jika dimisalkan , maka f(x) = y dapat dicari dengan perhitungan berikut Diperoleh f(x) = 2x + 1. Selanjutnya, kita cari nilai dari g(x) = y dengan memisalkan Diperoleh . Sehingga didapat fungsi komposisi sebagai berikut Dengan demikian, diperoleh Jika dimisalkan , maka didapat yang mengakibatkan

Pertama, perhatikan perhitungan berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral f to the power of negative 1 end exponent open parentheses x close parentheses d x end cell equals cell 1 fourth x squared minus 1 half x plus C fraction numerator d over denominator d x end fraction end cell row cell open parentheses integral f to the power of negative 1 end exponent open parentheses x close parentheses d x close parentheses end cell equals cell fraction numerator d over denominator d x end fraction open parentheses 1 fourth x squared minus 1 half x plus C close parentheses end cell row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell 1 fourth times 2 times x minus 1 half end cell row blank equals cell 1 half x minus 1 half end cell end table end style

Kemudian, jika dimisalkan undefined, maka f(x) = y dapat dicari dengan perhitungan berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f to the power of negative 1 end exponent open parentheses y close parentheses end cell equals x row cell 1 half y minus 1 half end cell equals x row cell y minus 1 end cell equals cell 2 x end cell row y equals cell 2 x plus 1 end cell end table end style

Diperoleh f(x) = 2x + 1.

Selanjutnya, kita cari nilai dari g(x) = y dengan memisalkan begin mathsize 14px style g to the power of negative 1 end exponent open parentheses y close parentheses equals x end style

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell g to the power of negative 1 end exponent open parentheses y close parentheses end cell equals x row cell square root of 1 third open parentheses y plus 1 close parentheses end root end cell equals x row cell 1 third open parentheses y plus 1 close parentheses end cell equals cell x squared end cell row cell y plus 1 end cell equals cell 3 x squared end cell row y equals cell 3 x squared minus 1 end cell end table end style

Diperoleh begin mathsize 14px style g open parentheses x close parentheses equals 3 x squared minus 1 end style.

Sehingga didapat fungsi komposisi sebagai berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses f ring operator g close parentheses open parentheses x close parentheses end cell equals cell f open parentheses g open parentheses x close parentheses close parentheses end cell row blank equals cell 2 open parentheses g open parentheses x close parentheses close parentheses plus 1 end cell row blank equals cell 2 times open parentheses 3 x squared minus 1 close parentheses plus 1 end cell row blank equals cell 6 x squared minus 2 plus 1 end cell row blank equals cell 6 x squared minus 1 end cell end table end style

Dengan demikian, diperoleh

begin mathsize 14px style integral open parentheses open parentheses f ring operator g close parentheses open parentheses x close parentheses close parentheses to the power of negative 2 end exponent times x blank d x equals integral open parentheses fraction numerator 1 over denominator open parentheses f ring operator g close parentheses open parentheses x close parentheses end fraction close parentheses squared times x blank d x equals integral 1 over open parentheses 6 x squared minus 1 close parentheses squared times x blank d x end style

Jika dimisalkan begin mathsize 14px style 6 x squared minus 1 equals u end style, maka didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell fraction numerator d u over denominator d x end fraction end cell equals cell 12 x end cell row cell integral fraction numerator d u over denominator d x end fraction d x end cell equals cell integral 12 x d x end cell row cell integral d u end cell equals cell integral 12 x d x end cell end table end style

yang mengakibatkan

begin mathsize 14px style integral 1 over open parentheses 6 x squared minus 1 close parentheses squared times x blank d x equals integral 1 over open parentheses 6 x squared minus 1 close parentheses squared times 12 over 12 x blank d x equals 1 over 12 integral fraction numerator 12 x over denominator open parentheses 6 x squared minus 1 close parentheses squared end fraction blank d x equals 1 over 12 integral 1 over u squared blank d u equals 1 over 12 times open parentheses negative 1 close parentheses times u to the power of negative 1 end exponent plus C equals negative 1 over 12 u to the power of negative 1 end exponent plus C equals negative 1 over 12 left parenthesis 6 x squared minus 1 right parenthesis to the power of negative 1 end exponent plus C end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

26

Iklan

Pertanyaan serupa

Hasil dari ∫ x 2 + 3 x − 5 ​ 6 x + 9 ​ d x adalah ...

11

3.2

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia