Iklan

Pertanyaan

Banyaknya bilangan bulat p yang memenuhi pertidaksamaan 6 4 p 2 − 2 p + 3 ≥ ( 3 2 p ⋅ 8 p − 1 ) p ada sebanyak ... buah.

Banyaknya bilangan bulat p yang memenuhi pertidaksamaan  ada sebanyak ... buah.

  1. 1

  2. 2

  3. 7

  4. 8

  5. 9

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

15

:

40

:

00

Klaim

Iklan

M. Robo

Master Teacher

Jawaban terverifikasi

Pembahasan

Perhatikan bahwa Karena 2 > 1, maka Didapat pembuat nol yaitu p = -6 atau . Sehingga didapat penyelesaian Karena p adalah bilangan bulat, maka himpunan penyelesaian untuk pertidaksamaan adalah . Maka banyaknya bilangan bulat yang memenuhi ada sebanyak 8 buah.

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 64 to the power of straight p squared minus 2 straight p plus 3 end exponent end cell greater or equal than cell left parenthesis 32 to the power of straight p times 8 to the power of straight p minus 1 end exponent right parenthesis to the power of straight p end cell row cell left parenthesis 2 to the power of 6 right parenthesis to the power of straight p squared minus 2 straight p plus 3 end exponent end cell greater or equal than cell left parenthesis left parenthesis 2 to the power of 5 right parenthesis to the power of straight p times left parenthesis 2 cubed right parenthesis to the power of straight p minus 1 end exponent right parenthesis to the power of straight p end cell row cell 2 to the power of 6 straight p squared minus 12 straight p plus 18 end exponent end cell greater or equal than cell left parenthesis 2 to the power of 5 straight p end exponent times 2 to the power of 3 straight p minus 3 end exponent right parenthesis to the power of straight p end cell row cell 2 to the power of 6 straight p squared minus 12 straight p plus 18 end exponent end cell greater or equal than cell left parenthesis 2 to the power of 5 straight p plus 3 straight p minus 3 end exponent right parenthesis to the power of straight p end cell row cell 2 to the power of 6 straight p squared minus 12 straight p plus 18 end exponent end cell greater or equal than cell left parenthesis 2 to the power of 8 straight p minus 3 end exponent right parenthesis to the power of straight p space space space end cell row cell 2 to the power of 6 straight p squared minus 12 straight p plus 18 end exponent end cell greater or equal than cell 2 to the power of 8 straight p squared minus 3 straight p end exponent end cell row blank blank blank end table end style 

Karena 2 > 1, maka

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 6 straight p squared minus 12 straight p plus 18 end cell greater or equal than cell 8 straight p squared minus 3 straight p end cell row cell negative 2 straight p squared minus 9 straight p plus 18 end cell greater or equal than 0 row cell 2 straight p squared plus 9 straight p minus 18 end cell less or equal than 0 row cell left parenthesis straight p plus 6 right parenthesis left parenthesis 2 straight p minus 3 right parenthesis end cell less or equal than 0 row blank blank blank end table end style 

Didapat pembuat nol yaitu = -6  atau begin mathsize 14px style straight p equals 3 over 2 end style  .

Sehingga didapat penyelesaian begin mathsize 14px style negative 6 less or equal than straight p less or equal than 3 over 2 end style 

Karena p  adalah bilangan bulat, maka himpunan penyelesaian untuk pertidaksamaan begin mathsize 14px style 64 to the power of straight p squared minus 2 straight p plus 3 end exponent greater or equal than left parenthesis 32 to the power of straight p times 8 to the power of straight p minus 1 end exponent right parenthesis to the power of straight p end style  adalah begin mathsize 14px style open curly brackets negative 6 comma negative 5 comma negative 4 comma negative 3 comma negative 2 comma negative 1 comma 0 comma 1 close curly brackets end style  .

Maka banyaknya bilangan bulat yang memenuhi ada sebanyak 8 buah.

 

 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Himpunan penyelesaian dari pertidaksamaan 9 ( p + 1 ) ( p + 3 ) > ( 2 7 p ) p ⋅ 8 1 2 p adalah ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia