Iklan

Pertanyaan

Bilangan bulat terbesar yang memenuhi pertidaksamaan adalah ....

Bilangan bulat terbesar yang memenuhi pertidaksamaan begin mathsize 14px style open parentheses square root of 1 over 27 end root close parentheses to the power of 4 x end exponent greater than open parentheses 3 over 3 to the power of x minus 2 end exponent close parentheses to the power of 5 times cube root of 1 over 9 end root end style adalah ....

  1. 15

  2. 14

  3. -8

  4. -14

  5. -15

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

13

:

59

:

30

Klaim

Iklan

M. Robo

Master Teacher

Jawaban terverifikasi

Pembahasan

Perhatikan bahwa Karena 3 > 1, maka Perhatikan bahwa bilangan bulat terbesar yang kurang dari adalah - 15 . Maka, bilangan bulat terbesar yang memenuhi pertidaksamaan adalah - 15 .

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses square root of 1 over 27 end root close parentheses to the power of 4 x end exponent end cell greater than cell open parentheses 3 over 3 to the power of x minus 2 end exponent close parentheses to the power of 5 times cube root of 1 over 9 end root end cell row cell open parentheses square root of 1 over 3 cubed end root close parentheses to the power of 4 x end exponent end cell greater than cell open parentheses 3 over 3 to the power of x minus 2 end exponent close parentheses to the power of 5 times cube root of 1 over 3 squared end root end cell row cell open parentheses square root of 3 to the power of negative 3 end exponent end root close parentheses to the power of 4 x end exponent end cell greater than cell open parentheses 3 to the power of 1 minus open parentheses x minus 2 close parentheses end exponent close parentheses to the power of 5 times cube root of 3 to the power of negative 2 end exponent end root end cell row cell open parentheses 3 to the power of negative 3 over 2 end exponent close parentheses to the power of 4 x end exponent end cell greater than cell open parentheses 3 to the power of 3 minus x end exponent close parentheses to the power of 5 times 3 to the power of negative 2 over 3 end exponent end cell row cell 3 to the power of negative 6 x end exponent end cell greater than cell 3 to the power of 15 minus 5 x end exponent times 3 to the power of negative 2 over 3 end exponent end cell row cell 3 to the power of negative 6 x end exponent end cell greater than cell 3 to the power of 15 minus 5 x minus 2 over 3 end exponent end cell row cell 3 to the power of negative 6 x end exponent end cell greater than cell 3 to the power of 43 over 3 minus 5 x end exponent end cell end table end style 

Karena 3 > 1, maka

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative 6 x end cell greater than cell 43 over 3 minus 5 x end cell row cell negative 6 x plus 5 x end cell greater than cell 43 over 3 end cell row cell negative x end cell greater than cell 43 over 3 end cell row x less than cell negative 43 over 3 end cell row x less than cell negative 14 1 third end cell end table end style 

Perhatikan bahwa bilangan bulat terbesar yang kurang dari begin mathsize 14px style negative 14 1 third end style  adalah -15 .

Maka, bilangan bulat terbesar yang memenuhi pertidaksamaan undefined adalah -15 .

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Teddy Suherman

Mudah dimengerti

Iklan

Pertanyaan serupa

Himpunan penyelesaian dari pertidaksamaan 5 p 2 − 2 p + 4 < ( 2 5 p ) p ⋅ 12 5 2 p adalah ....

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia