Iklan

Pertanyaan

1. Jika tan β = 1 + tan α ⋅ tan γ tan α + tan γ ​ , tunjukkan bahwa: sin 2 β = 1 + sin 2 α ⋅ sin 2 γ sin 2 α + sin 2 γ ​ .

1. Jika , tunjukkan bahwa: .space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

00

:

35

:

54

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

telah ditunjukan bahwa sin 2 β = 1 + sin 2 α ⋅ sin 2 γ sin 2 α + sin 2 γ ​ .

telah ditunjukan bahwa .space 

Pembahasan

Ingat kembali: tan A = cos A sin A ​ sin ( A + B ) ​ = ​ sin A ⋅ cos B + cos A ⋅ sin B ​ sin ( A − B ) ​ = ​ sin A ⋅ cos B − cos A ⋅ sin B ​ cos ( A + B ) ​ = ​ cos A ⋅ cos B − sin A ⋅ sin B ​ cos ( A − B ) ​ = ​ cos A ⋅ cos B + sin A ⋅ sin B ​ sin 2 A = 1 + tan 2 A 2 ⋅ tan A ​ 2 ⋅ sin A ⋅ cos B = sin ( A + B ) + sin ( A − B ) 2 ⋅ cos 2 A = 1 + cos 2 A 2 ⋅ sin 2 A = 1 − cos 2 A Dengan menggunakan rumus-rumus di atas, dapat diperoleh tan β ​ = = = = = = ​ 1 + t a n α ⋅ t a n γ t a n α + t a n γ ​ 1 + c o s α s i n α ​ ⋅ c o s γ s i n γ ​ c o s α s i n α ​ + c o s γ s i n γ ​ ​ c o s α ⋅ c o s γ c o s α ⋅ c o s γ ​ + c o s α ⋅ c o s γ s i n α ⋅ s i n γ ​ c o s α ⋅ c o s γ s i n α ⋅ c o s γ ​ + c o s α ⋅ c o s γ c o s α ⋅ s i n γ ​ ​ c o s α ⋅ c o s γ c o s α ⋅ c o s γ + s i n α ⋅ s i n γ ​ c o s α ⋅ c o s γ s i n α ⋅ c o s γ + c o s α ⋅ s i n γ ​ ​ c o s α ⋅ c o s γ + s i n α ⋅ s i n γ s i n α ⋅ c o s γ + c o s α ⋅ s i n γ ​ c o s ( α − γ ) s i n ( α + γ ) ​ ​ sehingga diperoleh sin 2 β sin 2 β ​ = = = = = = = = = = = = = = ​ 1 + t a n 2 β 2 ⋅ t a n β ​ 1 + ( c o s ( α − γ ) s i n ( α + γ ) ​ ) 2 2 ⋅ c o s ( α − γ ) s i n ( α + γ ) ​ ​ c o s 2 ( α − γ ) c o s 2 ( α − γ ) ​ + c o s 2 ( α − γ ) s i n 2 ( α + γ ) ​ 2 ⋅ c o s ( α − γ ) s i n ( α + γ ) ​ ​ c o s 2 ( α − γ ) c o s 2 ( α − γ ) + s i n 2 ( α + γ ) ​ 2 ⋅ c o s ( α − γ ) s i n ( α + γ ) ​ ​ c o s ( α − γ ) ​ 1 2 ⋅ s i n ( α + γ ) ​ × c o s 2 ( α − γ ) + s i n 2 ( α + γ ) c o s 2 ( α − γ ) ​ c o s ( α − γ ) ​ c o s 2 ( α − γ ) + s i n 2 ( α + γ ) 2 ⋅ s i n ( α + γ ) ⋅ c o s ( α − γ ) ​ c o s 2 ( α − γ ) + s i n 2 ( α + γ ) s i n ( α + γ + α − γ ) + s i n ( α + γ − ( α − γ ) ) ​ c o s 2 ( α − γ ) + s i n 2 ( α + γ ) s i n 2 α + s i n 2 γ ​ 2 ⋅ c o s 2 ( α − γ ) + 2 ⋅ s i n 2 ( α + γ ) 2 ⋅ ( s i n 2 α + s i n 2 γ ) ​ 1 + c o s 2 ( α − γ ) + 1 − c o s 2 ( α + γ ) 2 ⋅ ( s i n 2 α + s i n 2 γ ) ​ 2 + c o s ( 2 α − 2 γ ) − c o s ( 2 α + 2 γ ) 2 ⋅ ( s i n 2 α + s i n 2 γ ) ​ Olehkarena c o s ( 2 α − 2 γ ) − c o s ( 2 α + 2 γ ) = c o s 2 α ⋅ c o s 2 γ + s i n 2 α ⋅ s i n 2 γ − ( c o s 2 α ⋅ c o s 2 γ − s i n 2 α ⋅ s i n 2 γ ) = c o s 2 α ⋅ c o s 2 γ + s i n 2 α ⋅ s i n 2 γ − c o s 2 α ⋅ c o s 2 γ + s i n 2 α ⋅ s i n 2 γ ) = c o s 2 α ⋅ c o s 2 γ − c o s 2 α ⋅ c o s 2 γ + s i n 2 α ⋅ s i n 2 γ + s i n 2 α ⋅ s i n 2 γ = 2 ⋅ s i n 2 α ⋅ s i n 2 γ makadiperoleh ​ 2 + 2 ⋅ s i n 2 α ⋅ s i n 2 γ 2 ⋅ ( s i n 2 α + s i n 2 γ ) ​ 2 ⋅ ( 1 + s i n 2 α ⋅ s i n 2 γ ) 2 ⋅ ( s i n 2 α + s i n 2 γ ) ​ 1 + s i n 2 α ⋅ s i n 2 γ s i n 2 α + s i n 2 γ ​ ​ Dengan demikian, telah ditunjukan bahwa sin 2 β = 1 + sin 2 α ⋅ sin 2 γ sin 2 α + sin 2 γ ​ .

Ingat kembali:

  •  
  •  

Dengan menggunakan rumus-rumus di atas, dapat diperoleh 

sehingga diperoleh

    

Dengan demikian, telah ditunjukan bahwa .space 

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!