Iklan

Pertanyaan

Tentukanlah nilai integral di bawah ini: c. ∫ 0 2 ​ ( x 3 − 6 x 2 + 8 x ) d x

Tentukanlah nilai integral di bawah ini:

c.  space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

06

:

33

:

26

Klaim

Iklan

A. Armanda

Master Teacher

Mahasiswa/Alumni Universitas Indraprasta PGRI

Jawaban terverifikasi

Jawaban

.

 integral subscript 0 superscript 2 open parentheses x cubed minus 6 x squared plus 8 x close parentheses space d x equals 4.

Pembahasan

Ingat! Sehingga, Jadi, .

Ingat!

  table attributes columnalign right center left columnspacing 0px end attributes row cell integral subscript a superscript b f open parentheses x close parentheses plus-or-minus g open parentheses x close parentheses space d x end cell equals cell integral subscript a superscript b f open parentheses x close parentheses space d x plus-or-minus integral subscript a superscript b g open parentheses x close parentheses space d x end cell row cell integral subscript a superscript b k f left parenthesis x right parenthesis space d x end cell equals cell k integral subscript a superscript b f left parenthesis x right parenthesis space d x end cell row cell integral subscript a superscript b a x to the power of n space d x end cell equals cell open parentheses fraction numerator a over denominator n plus 1 end fraction x to the power of n plus 1 end exponent close parentheses subscript a superscript b space end cell end table 

Sehingga,

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell integral subscript 0 superscript 2 open parentheses x cubed minus 6 x squared plus 8 x close parentheses space d x end cell row blank equals cell integral subscript 0 superscript 2 x cubed space d x minus 6 integral subscript 0 superscript 2 x squared space d x plus 8 integral subscript 0 superscript 2 x space d x end cell row blank equals cell open parentheses fraction numerator 1 over denominator 3 plus 1 end fraction x to the power of 3 plus 1 end exponent close parentheses subscript 0 superscript 2 minus 6 open parentheses fraction numerator 1 over denominator 2 plus 1 end fraction x to the power of 2 plus 1 end exponent close parentheses subscript 0 superscript 2 plus 8 open parentheses fraction numerator 1 over denominator 1 plus 1 end fraction x to the power of 1 plus 1 end exponent close parentheses subscript 0 superscript 2 end cell row blank equals cell 1 fourth open parentheses x to the power of 4 close parentheses subscript 0 superscript 2 minus 6 times 1 third open parentheses x cubed close parentheses subscript 0 superscript 2 plus 8 times 1 half open parentheses x squared close parentheses subscript 0 superscript 2 end cell row blank equals cell 1 fourth open parentheses x to the power of 4 close parentheses subscript 0 superscript 2 minus 2 open parentheses x cubed close parentheses subscript 0 superscript 2 plus 4 open parentheses x squared close parentheses subscript 0 superscript 2 end cell row blank equals cell 1 fourth open parentheses 2 to the power of 4 minus 0 to the power of 4 close parentheses minus 2 open parentheses 2 cubed minus 0 cubed close parentheses plus 4 open parentheses 2 squared minus 0 squared close parentheses end cell row blank equals cell 16 over 4 minus 16 plus 16 end cell row blank equals 4 end table  

Jadi, integral subscript 0 superscript 2 open parentheses x cubed minus 6 x squared plus 8 x close parentheses space d x equals 4.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Hasil dari ∫ 0 2 ​ 3 ( x + 1 ) ( x − 6 ) d x = ....

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia