Iklan

Pertanyaan

Tentukan invers dari matriks ⎝ ⎛ ​ 1 2 1 ​ 2 1 − 2 ​ − 4 − 1 5 ​ ⎠ ⎞ ​ .

Tentukan invers dari matriks .

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

19

:

28

:

54

Klaim

Iklan

E. Nur

Master Teacher

Mahasiswa/Alumni Institut Teknologi Sepuluh Nopember

Jawaban terverifikasi

Jawaban

innvers matriks adalah .

innvers matriks begin mathsize 14px style open parentheses table row 1 2 cell negative 4 end cell row 2 1 cell negative 1 end cell row 1 cell negative 2 end cell 5 end table close parentheses end style adalah begin mathsize 14px style open parentheses table row 3 cell negative 2 end cell 2 row cell negative 11 end cell 9 cell negative 7 end cell row cell negative 5 end cell 4 cell negative 3 end cell end table close parentheses end style.

Pembahasan

Misalkan : Rumus mencari invers matriks adalah Dengan menggunkan metode Minor-Kofaktor diperoleh Kemudian, menentukan adjoin matriks dengan mencari matriks kofaktor , sebagai berikut Sehingga diperoleh adjoin matriks sebagai berikut Kemudian diperoleh invers matriks sebagai berikut Dengan demikian innvers matriks adalah .

Misalkan :

begin mathsize 14px style A equals open parentheses table row 1 2 cell negative 4 end cell row 2 1 cell negative 1 end cell row 1 cell negative 2 end cell 5 end table close parentheses end style

Rumus mencari invers matriks adalah

begin mathsize 14px style A to the power of negative 1 end exponent equals fraction numerator 1 over denominator d e t space A end fraction a d j open parentheses A close parentheses end style

Dengan menggunkan metode Minor-Kofaktor diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell det space A end cell equals cell a subscript 11 C subscript 11 plus a subscript 12 C subscript 12 plus a subscript 13 C subscript 13 end cell row blank equals cell 1 times open parentheses negative 1 close parentheses to the power of 1 plus 1 end exponent times open vertical bar table row 1 cell negative 1 end cell row cell negative 2 end cell 5 end table close vertical bar plus 2 times open parentheses negative 1 close parentheses to the power of 1 plus 2 end exponent times open vertical bar table row 2 cell negative 1 end cell row 1 5 end table close vertical bar end cell row blank blank cell space plus open parentheses negative 4 close parentheses times open parentheses negative 1 close parentheses to the power of 1 plus 3 end exponent times open vertical bar table row 2 1 row 1 cell negative 2 end cell end table close vertical bar end cell row blank equals cell 1 open parentheses 5 minus 2 close parentheses minus 2 open parentheses 10 plus 1 close parentheses minus 4 open parentheses negative 4 minus 1 close parentheses end cell row blank equals cell 3 minus 22 plus 20 end cell row blank equals 1 end table end style

Kemudian, menentukan adjoin matriks dengan mencari matriks kofaktor begin mathsize 14px style straight A end style, sebagai berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell K o f open parentheses A close parentheses end cell equals cell open parentheses open parentheses negative 1 close parentheses to the power of i plus j end exponent M subscript i j end subscript close parentheses end cell row blank equals cell open parentheses table row cell M subscript 11 end cell cell M subscript 12 end cell cell M subscript 13 end cell row cell M subscript 21 end cell cell M subscript 22 end cell cell M subscript 23 end cell row cell M subscript 31 end cell cell M subscript 32 end cell cell M subscript 33 end cell end table close parentheses end cell row blank equals cell open parentheses negative table row cell open vertical bar table row 1 cell negative 1 end cell row cell negative 2 end cell 5 end table close vertical bar end cell cell negative open vertical bar table row 2 cell negative 1 end cell row 1 5 end table close vertical bar end cell cell open vertical bar table row 2 1 row 1 cell negative 2 end cell end table close vertical bar end cell row cell open vertical bar table row 2 cell negative 4 end cell row cell negative 2 end cell 5 end table close vertical bar end cell cell open vertical bar table row 1 cell negative 4 end cell row 1 5 end table close vertical bar end cell cell negative open vertical bar table row 1 2 row 1 cell negative 2 end cell end table close vertical bar end cell row cell open vertical bar table row 2 cell negative 4 end cell row 1 cell negative 1 end cell end table close vertical bar end cell cell negative open vertical bar table row 1 cell negative 4 end cell row 2 cell negative 1 end cell end table close vertical bar end cell cell open vertical bar table row 1 2 row 2 1 end table close vertical bar end cell end table close parentheses end cell row blank equals cell open parentheses table row cell open parentheses 5 minus 2 close parentheses end cell cell negative open parentheses 10 plus 1 close parentheses end cell cell open parentheses negative 4 minus 1 close parentheses end cell row cell negative open parentheses 10 minus 8 close parentheses end cell cell open parentheses 5 plus 4 close parentheses end cell cell negative open parentheses negative 2 minus 2 close parentheses end cell row cell open parentheses negative 2 plus 4 close parentheses end cell cell negative open parentheses negative 1 plus 8 close parentheses end cell cell open parentheses 1 minus 4 close parentheses end cell end table close parentheses end cell row blank equals cell open parentheses table row 3 cell negative 11 end cell cell negative 5 end cell row cell negative 2 end cell 9 4 row 2 cell negative 7 end cell cell negative 3 end cell end table close parentheses end cell end table end style

Sehingga diperoleh adjoin matriks begin mathsize 14px style straight A end style sebagai berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell a d j open parentheses A close parentheses end cell equals cell open parentheses K o f open parentheses A close parentheses close parentheses to the power of straight T end cell row blank equals cell open parentheses table row 3 cell negative 2 end cell 2 row cell negative 11 end cell 9 cell negative 7 end cell row cell negative 5 end cell 4 cell negative 3 end cell end table close parentheses end cell end table end style

Kemudian diperoleh invers matriks begin mathsize 14px style straight A end style sebagai berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell A to the power of negative 1 end exponent end cell equals cell fraction numerator 1 over denominator det space A end fraction a d j open parentheses A close parentheses end cell row blank equals cell 1 over 1 open parentheses table row 3 cell negative 2 end cell 2 row cell negative 11 end cell 9 cell negative 7 end cell row cell negative 5 end cell 4 cell negative 3 end cell end table close parentheses end cell row blank equals cell open parentheses table row 3 cell negative 2 end cell 2 row cell negative 11 end cell 9 cell negative 7 end cell row cell negative 5 end cell 4 cell negative 3 end cell end table close parentheses end cell end table end style

Dengan demikian innvers matriks begin mathsize 14px style open parentheses table row 1 2 cell negative 4 end cell row 2 1 cell negative 1 end cell row 1 cell negative 2 end cell 5 end table close parentheses end style adalah begin mathsize 14px style open parentheses table row 3 cell negative 2 end cell 2 row cell negative 11 end cell 9 cell negative 7 end cell row cell negative 5 end cell 4 cell negative 3 end cell end table close parentheses end style.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

1. Diketahui matriks M = ⎣ ⎡ ​ 1 2 1 ​ 2 5 0 ​ 3 3 8 ​ ⎦ ⎤ ​ maka tentukan a. Determinan M b. Matriks kofaktor c. Invers matriks

42

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia