Iklan

Iklan

Pertanyaan

Selesaikanlah integral berikut! e. ∫ x 2 x 2 − 3 ​ d x

Selesaikanlah integral berikut!

e.  

Iklan

R. Septa

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Jawaban

.

 table attributes columnalign right center left columnspacing 0px end attributes row blank blank integral end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell fraction numerator x squared minus 3 over denominator x squared end fraction end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank straight d end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 3 over x end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank C end table.

Iklan

Pembahasan

Perhatikan perhitungan berikut. Jadi, .

Perhatikan perhitungan berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell integral fraction numerator x squared minus 3 over denominator x squared end fraction space straight d x end cell equals cell integral x to the power of negative 2 end exponent open parentheses x squared minus 3 close parentheses space straight d x end cell row blank equals cell integral 1 minus 3 x to the power of negative 2 end exponent space straight d x end cell row blank equals cell x minus fraction numerator 3 over denominator negative 1 end fraction x to the power of negative 1 end exponent plus C end cell row blank equals cell x plus 3 x to the power of negative 1 end exponent plus C end cell row blank equals cell x plus 3 over x plus C end cell end table     

Jadi, table attributes columnalign right center left columnspacing 0px end attributes row blank blank integral end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell fraction numerator x squared minus 3 over denominator x squared end fraction end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank straight d end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 3 over x end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank C end table.

Latihan Bab

Pengenalan Integral

Integral Tak Tentu

Integral Substitusi

Aplikasi Integral Tak Tentu

44

Marko agung Simanjuntak

Pembahasan lengkap banget

Iklan

Iklan

Pertanyaan serupa

Selesaikanlah integral berikut! d. ∫ x 3 x 9 − 3 ​ d x

51

4.6

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia