Iklan

Pertanyaan

Selesaikan sistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan), kemudian tulislah himpunan penyelesaiannya, ⎩ ⎨ ⎧ ​ x 4 ​ + y 3 ​ + z 1 ​ = 9 x 3 ​ − y 4 ​ + z 2 ​ = 3 x 2 ​ + y 5 ​ − z 1 ​ = 5 ​

Selesaikan sistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan), kemudian tulislah himpunan penyelesaiannya,

 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

08

:

31

:

09

Klaim

Iklan

H. Endah

Master Teacher

Mahasiswa/Alumni Universitas Negeri Yogyakarta

Jawaban terverifikasi

Jawaban

himpunan penyelesaiannya darisistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan) adalah .

 himpunan penyelesaiannya dari sistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan) adalah open curly brackets open parentheses 1 comma 1 comma 1 half close parentheses close curly brackets.

Pembahasan

Dalam menemukan penyelesaian sistem persamaan linear dua variabel dengan cara eliminasi Gauss-Jordan adalah sebagai berikut: diubah ke dalam bentuk matriks: Matriks sebelah kiri yaitu diubah menjadi matriks dengan operasi aljabar pada baris matriks tersebut. Diketahui sistem persamaan: Misalkan , maka didapatkan persamaan baru yaitu: Dari 3 persamaan di atas diubah ke dalam matriks dan didapatkan: Akan dicari nilai dengan cara cara eliminasi si Gauss-Jordan sebagai berikut: Sehingga didapatkan: Nilai didapatkan: Jadi,himpunan penyelesaiannya darisistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan) adalah .

Dalam menemukan penyelesaian sistem persamaan linear dua variabel dengan cara eliminasi Gauss-Jordan adalah sebagai berikut:

table attributes columnalign right center left columnspacing 0px end attributes row cell a x plus b y plus c z end cell equals j row cell d x plus e y plus f z end cell equals k row cell g x plus h y plus i z end cell equals l end table  

diubah ke dalam bentuk matriks:

open parentheses table row cell right enclose table row a b c row d e f row g h i end table end enclose end cell cell table row j row k row l end table end cell end table close parentheses  

Matriks sebelah kiri yaitu open parentheses table row a b c row d e f row g h i end table close parentheses diubah menjadi matriks open parentheses table row 1 0 0 row 0 1 0 row 0 0 1 end table close parentheses dengan operasi aljabar pada baris matriks tersebut.

Diketahui sistem persamaan:

begin mathsize 14px style open curly brackets table attributes columnalign left end attributes row cell 4 over x plus 3 over y plus 1 over z equals 9 end cell row cell 3 over x minus 4 over y plus 2 over z equals 3 end cell row cell 2 over x plus 5 over y minus 1 over z equals 5 end cell end table close space end style

Misalkan 1 over x equals a comma space 1 over y equals b comma space dan space 1 over z equals c, maka didapatkan persamaan baru yaitu: 

table row cell 4 over x plus 3 over y plus 1 over z equals 9 end cell rightwards double arrow cell 4 a plus 3 b plus c equals 9 end cell row cell 3 over x minus 4 over y plus 2 over z equals 3 end cell rightwards double arrow cell 3 a minus 4 b plus 2 c equals 3 end cell row cell 2 over x plus 5 over y minus 1 over z equals 5 end cell rightwards double arrow cell 2 a plus 5 b minus c equals 5 end cell end table  

Dari 3 persamaan di atas diubah ke dalam matriks dan didapatkan:

open parentheses table row cell right enclose table row 4 3 1 row 3 cell negative 4 end cell 2 row 2 5 cell negative 1 end cell end table end enclose end cell cell table row 9 row 3 row 5 end table end cell end table close parentheses      

Akan dicari nilai a comma space b comma space dan space c dengan cara cara eliminasi si Gauss-Jordan sebagai berikut:

table row cell open parentheses table row cell right enclose table row 4 3 1 row 3 cell negative 4 end cell 2 row 2 5 cell negative 1 end cell end table end enclose end cell cell table row 9 row 3 row 5 end table end cell end table close parentheses end cell cell table row space row cell 3 B subscript 1 minus 4 B subscript 2 rightwards double arrow B subscript 2 end cell row cell 2 B subscript 3 minus B subscript 1 rightwards double arrow B subscript 3 end cell end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 25 cell negative 5 end cell row 0 7 cell negative 3 end cell end table end enclose end cell cell table row 9 row 15 row 1 end table end cell end table close parentheses end cell cell table row space row cell 1 fifth B subscript 2 rightwards double arrow B subscript 2 end cell row space end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 5 cell negative 1 end cell row 0 7 cell negative 3 end cell end table end enclose end cell cell table row 9 row 3 row 1 end table end cell end table close parentheses end cell cell table row space row space row cell 7 B subscript 2 minus 5 B subscript 3 rightwards double arrow B subscript 3 end cell end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 5 cell negative 1 end cell row 0 0 8 end table end enclose end cell cell table row 9 row 3 row 16 end table end cell end table close parentheses end cell cell table row space row space row cell 1 over 8 B subscript 3 rightwards double arrow B subscript 3 end cell end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 5 cell negative 1 end cell row 0 0 1 end table end enclose end cell cell table row 9 row 3 row 2 end table end cell end table close parentheses end cell cell table row space row cell B subscript 2 plus B subscript 3 rightwards double arrow B subscript 2 end cell row space end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 5 0 row 0 0 1 end table end enclose end cell cell table row 9 row 5 row 2 end table end cell end table close parentheses end cell cell table row space row cell 1 fifth B subscript 2 rightwards double arrow B subscript 2 end cell row space end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 1 row 0 1 0 row 0 0 1 end table end enclose end cell cell table row 9 row 1 row 2 end table end cell end table close parentheses end cell cell table row cell B subscript 1 minus B subscript 3 rightwards double arrow B subscript 1 end cell row space row space end table end cell end table table row cell open parentheses table row cell right enclose table row 4 3 0 row 0 1 0 row 0 0 1 end table end enclose end cell cell table row 7 row 1 row 2 end table end cell end table close parentheses end cell cell table row cell B subscript 1 minus 3 B subscript 2 rightwards double arrow B subscript 1 end cell row space row space end table end cell end table table row cell open parentheses table row cell right enclose table row 4 0 0 row 0 1 0 row 0 0 1 end table end enclose end cell cell table row 4 row 1 row 2 end table end cell end table close parentheses end cell cell table row cell 1 fourth B subscript 1 rightwards double arrow B subscript 1 end cell row space row space end table end cell end table table row cell open parentheses table row cell right enclose table row 1 0 0 row 0 1 0 row 0 0 1 end table end enclose end cell cell table row 1 row 1 row 2 end table end cell end table close parentheses end cell space end table        

Sehingga didapatkan:

a equals 1 b equals 1 c equals 2 

Nilai x comma space y comma space dan space z didapatkan:

table row cell 1 over x equals a end cell space space space cell 1 over y equals b end cell space space space cell 1 over z equals c end cell row cell 1 over x equals 1 end cell space space space cell 1 over y equals 1 end cell space space space cell 1 over z equals 2 end cell row cell x equals 1 end cell space space space cell y equals 1 end cell space space space cell 2 z equals 1 end cell row space space space space space space space space cell z equals 1 half end cell end table  

Jadi, himpunan penyelesaiannya dari sistem persamaan berikut dengan cara matriks (eliminasi Gauss-Jordan) adalah open curly brackets open parentheses 1 comma 1 comma 1 half close parentheses close curly brackets.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Tentukan solusi dari setiap sistem persamaan linear dua variabel di bawah ini dengan cara eliminasi si Gauss-Jordan. { 2 x + y = 6 x − y = − 3 ​

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia