Dari persamaan simpangan y1=2 cos(ωt−kx+3π) dan y2=4 cos(2ωt+kx+π), dapat kita peroleh:
A1=2 mA2=4 mθ1=ωt−kx+3πθ2=2ωt+kx+π
Kemudian periksa setiap jawaban.
A. Frekuensi kedua gelombang sama
Berdasarkan persamaan simpangan gelombangnya, besar kecepatan sudut tiap gelombang berbeda (ω1=ω, ω2=2ω), maka frekuensinya kedua gelombang pasti berbeda.
(pernyataan A salah)
B. Intensitas kedua gelombang tidak dapat ditentukan
Intensitas gelombang dapat dihitung dengan persamaan
I=E=2π2m f2 A2
(pernyataan B salah)
C. Beda fase kedua gelombang tidak konstan
Beda fase dapat dihitung dengan:
△φ=2π△θ=2πθ2−θ1△φ=2π(2ωt+kx+π)−(ωt−kx+3π)△φ=2πωt+2kx−2π
Terlihat bahwa beda fase dipengaruhi oleh waktu (t) dan jarak (x), sehingga beda fasenya tidak konstan atau berubah-ubah.
(pernyataan C benar)
D. Arah rambat gelombang pertama ke kiri, dan gelombang kedua ke kanan
Persamaan gelombang pertama → -kx, maka gelombang merambat ke kanan
Persamaan gelombang kedua → kx, maka gelombang merambat ke kiri
(pernyataan D salah)
E. Cepat rambat gelombang pertama lebih besar dari cepat rambat gelombang kedua
Hitung cepat rambat tiap gelombang dengan persamaan:
v1=k1ω1=kωv2=k2ω2=k2ω
Diperoleh cepat rambat gelombang kedua lebih besar dari cepat rambat gelombang pertama.
(pernyataan E salah)
Jadi, jawaban yang tepat adalah C.