Iklan

Pertanyaan

Luas daerah tertutup yang dibatasi oleh kurva y = x 2 − x dan garis y = x + 8 adalah … satuan luas.

Luas daerah tertutup yang dibatasi oleh kurva dan garis  adalah  satuan luas.

  1. 12

  2. 24

  3. 26

  4. 28

  5. 36

8 dari 10 siswa nilainya naik

dengan paket belajar pilihan

Habis dalam

02

:

10

:

03

:

23

Klaim

Iklan

M. Iqbal

Master Teacher

Mahasiswa/Alumni Universitas Negeri Semarang

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah E.

jawaban yang tepat adalah E.

Pembahasan

Luas daerah yang dibatasi oleh dua kurva didefinisikan oleh dengan adalah kurva yang terletak di atas, adalah kurva yang terletak di bawah, serta dan merupakan batas daerah arsirannya. Perhatikan grafik berikut: Batas-batas dari daerah arsiran antara kurva dan garis adalah dan . Karena garis terletak di atas kurva ,maka luas daerah arsiran tersebut sama dengan Jadi, jawaban yang tepat adalah E.

Luas daerah yang dibatasi oleh dua kurva didefinisikan oleh

straight L equals integral subscript a superscript b open parentheses f open parentheses x close parentheses minus g open parentheses x close parentheses close parentheses d x

dengan f left parenthesis x right parenthesis adalah kurva yang terletak di atas, g left parenthesis x right parenthesis adalah kurva yang terletak di bawah, serta x equals a dan size 14px x size 14px equals size 14px b merupakan batas daerah arsirannya.

Perhatikan grafik berikut:



Batas-batas dari daerah arsiran antara kurva y equals x squared minus x dan garis y equals x plus 8  adalah x equals negative 2 dan x equals 4. Karena garis y equals x plus 8 terletak di atas kurva y equals x squared minus x, maka luas daerah arsiran tersebut sama dengan

table attributes columnalign right center left columnspacing 0px end attributes row straight L equals cell integral subscript negative 2 end subscript superscript 4 open parentheses open parentheses x plus 8 close parentheses minus open parentheses x squared minus x close parentheses close parentheses d x end cell row blank equals cell integral subscript negative 1 end subscript superscript 4 open parentheses 8 plus 2 x minus x squared close parentheses d x end cell row blank equals cell right enclose 8 x plus x squared minus 1 third x cubed end enclose subscript negative 2 end subscript superscript 4 end cell row blank equals cell open parentheses 8 open parentheses 4 close parentheses plus open parentheses 4 close parentheses squared minus 1 third open parentheses 4 close parentheses cubed close parentheses end cell row blank blank cell negative open parentheses 8 open parentheses negative 2 close parentheses plus open parentheses negative 2 close parentheses squared minus 1 third open parentheses negative 2 close parentheses cubed close parentheses end cell row blank equals cell open parentheses 32 plus 16 minus 1 third open parentheses 64 close parentheses close parentheses minus open parentheses negative 16 plus 4 minus 1 third open parentheses negative 8 close parentheses close parentheses end cell row blank equals cell open parentheses 48 minus 64 over 3 close parentheses minus open parentheses negative 12 plus 8 over 3 close parentheses end cell row blank equals cell 48 minus 64 over 3 plus 12 minus 8 over 3 end cell row blank equals cell 60 minus 72 over 3 end cell row blank equals cell 60 minus 24 end cell row blank equals 36 end table

Jadi, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

4

Iklan

Pertanyaan serupa

Luas daerah yang dibatasi oleh kurva y = x 2 − x − 2 dengan garis y = − 4 x + 2 adalah ... satuan luas.

20

4.5

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia