Iklan

Iklan

Pertanyaan

Jika dan Maka A − 1 B = ....

Jika A equals open parentheses table row 2 1 row 5 3 end table close parentheses dan B equals open parentheses table row 1 2 row cell negative 2 end cell 1 end table close parentheses Maka ....

  1. open parentheses table row 12 1 row 7 1 end table close parentheses

  2. open parentheses table row 5 5 row cell negative 9 end cell cell negative 8 end cell end table close parentheses

  3. open parentheses table row 5 5 row cell negative 9 end cell cell negative 8 end cell end table close parentheses

     

  4. open parentheses table row cell negative 13 end cell cell negative 2 end cell row 1 11 end table close parentheses

  5. open parentheses table row cell negative 13 end cell 2 row 1 cell negative 11 end cell end table close parentheses

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

A to the power of negative 1 end exponent B equals open parentheses table row 2 1 row 5 3 end table close parentheses to the power of negative 1 end exponent open parentheses table row 1 2 row cell negative 2 end cell 1 end table close parentheses  space space space space space space space space space space space space equals fraction numerator 1 over denominator 6 minus 5 end fraction open parentheses table row 3 cell negative 1 end cell row cell negative 5 end cell 2 end table close parentheses to the power of space open parentheses table row 1 2 row cell negative 2 end cell 1 end table close parentheses  space space space space space space space space space space space space equals open parentheses table row 3 cell negative 1 end cell row cell negative 5 end cell 2 end table close parentheses to the power of space open parentheses table row 1 2 row cell negative 2 end cell 1 end table close parentheses  space space space space space space space space space space space space equals open parentheses table row cell 3 plus 2 end cell cell 6 minus 1 end cell row cell negative 5 minus 4 end cell cell negative 10 plus 2 end cell end table close parentheses to the power of space  space space space space space space space space space space space space equals open parentheses table row 5 5 row cell negative 9 end cell cell negative 8 end cell end table close parentheses to the power of space

Latihan Bab

Konsep Kilat

Pengertian Matriks

Operasi Hitung Matriks

Invers Matriks

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

19

Iklan

Iklan

Pertanyaan serupa

Diketahui matriks A = [ 2 1 ​ − 1 3 ​ ] dan B = [ 4 7 ​ 1 − 2 ​ ] tentukanlah: b. B T ⋅ A − 1

33

0.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia