Iklan

Pertanyaan

Hasil dari ∫ x 2 + 6 x + 5 ​ d x = ....

Hasil dari ....

  1. begin mathsize 14px style 1 fourth open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end style 

  2. begin mathsize 14px style 1 fourth open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus 2 ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end style 

  3. begin mathsize 14px style 1 fourth open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus 1 half ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end style 

  4. begin mathsize 14px style 1 half open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end style 

  5. begin mathsize 14px style 1 half open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus 2 ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

07

:

07

:

18

Klaim

Iklan

N. Rahayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Jakarta

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah E.

jawaban yang tepat adalah E.

Pembahasan

Misalkan: Sehingga diperoleh adalah sisi miring sebuah segitiga siku-siku dengan kedua sisi tegaknya dan 2. Maka diperoleh dan Jika kita integralkan kedua ruas maka diperoleh Sehingga, Kemudian ingat kembali integral berikut ini pada pembahasan sebelumnya. Dan Sehingga, Jadi, jawaban yang tepat adalah E.

Misalkan:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell square root of x squared plus 6 x plus 5 end root end cell row y equals cell square root of open parentheses x plus 3 close parentheses squared minus 4 end root end cell row cell y squared end cell equals cell open parentheses x plus 3 close parentheses squared minus 2 squared end cell row cell y squared plus 2 squared end cell equals cell open parentheses x plus 3 close parentheses squared end cell end table end style 

Sehingga diperoleh begin mathsize 14px style open parentheses x plus 3 close parentheses end style adalah sisi miring sebuah segitiga siku-siku dengan kedua sisi tegaknya undefined dan 2.

Maka diperoleh

begin mathsize 14px style tan invisible function application theta equals y over 2 equals fraction numerator square root of x squared plus 6 x plus 5 end root over denominator 2 end fraction end style 

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell sec invisible function application theta end cell equals cell fraction numerator x plus 3 over denominator 2 end fraction end cell row cell x plus 3 end cell equals cell 2 sec invisible function application theta end cell row x equals cell 2 sec invisible function application theta minus 3 end cell row cell fraction numerator d x over denominator d theta end fraction end cell equals cell 2 sec invisible function application theta tan invisible function application theta end cell end table end style 

Jika kita integralkan kedua ruas maka diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral fraction numerator d x over denominator d theta end fraction d theta end cell equals cell 2 integral sec invisible function application theta tan invisible function application theta d theta end cell row cell integral d x end cell equals cell 2 integral sec invisible function application theta tan invisible function application theta d theta end cell end table end style 

Sehingga,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral square root of x squared plus 6 x plus 5 end root blank d x end cell equals cell integral square root of open parentheses x plus 3 close parentheses squared minus 4 end root blank d x end cell row blank equals cell 2 integral square root of open parentheses 2 sec invisible function application theta close parentheses squared minus 4 end root blank sec invisible function application theta tan invisible function application theta d theta end cell row blank equals cell 2 integral square root of 4 sec squared invisible function application theta minus 4 end root blank sec invisible function application theta tan invisible function application theta d theta end cell row blank equals cell 2 integral square root of 4 open parentheses sec squared invisible function application theta minus 1 close parentheses end root blank sec invisible function application theta tan invisible function application theta d theta end cell row blank equals cell 2 integral square root of 4 tan squared invisible function application theta end root sec invisible function application theta tan invisible function application theta d theta end cell row blank equals cell 4 integral sec invisible function application theta tan squared invisible function application theta d theta end cell row blank equals cell 4 integral sec invisible function application theta open parentheses sec squared invisible function application theta minus 1 close parentheses d theta end cell row blank equals cell 4 integral sec cubed invisible function application theta minus sec invisible function application theta d theta end cell end table end style 

Kemudian ingat kembali integral berikut ini pada pembahasan sebelumnya. 

undefined 

Dan

begin mathsize 14px style integral sec invisible function application theta d theta equals ln invisible function application open vertical bar sec invisible function application theta plus tan invisible function application theta close vertical bar plus C end style 

Sehingga,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral square root of x squared plus 6 x plus 5 end root blank d x end cell equals cell 4 integral sec cubed invisible function application theta minus sec invisible function application theta d theta end cell row blank equals cell 4 open parentheses fraction numerator sec invisible function application theta tan invisible function application theta over denominator 2 end fraction plus fraction numerator ln invisible function application open vertical bar sec invisible function application theta plus tan invisible function application theta close vertical bar over denominator 2 end fraction minus ln invisible function application open vertical bar sec invisible function application theta plus tan invisible function application theta close vertical bar plus C close parentheses end cell row blank equals cell 4 open parentheses fraction numerator sec invisible function application theta tan invisible function application theta over denominator 2 end fraction minus fraction numerator ln invisible function application open vertical bar sec invisible function application theta plus tan invisible function application theta close vertical bar over denominator 2 end fraction plus C close parentheses end cell row blank equals cell 2 open parentheses sec invisible function application theta tan invisible function application theta minus ln invisible function application open vertical bar sec invisible function application theta plus tan invisible function application theta close vertical bar plus C close parentheses end cell row blank equals cell 2 open parentheses fraction numerator x plus 3 over denominator 2 end fraction times fraction numerator square root of x squared plus 6 x plus 5 end root over denominator 2 end fraction minus ln invisible function application open vertical bar fraction numerator square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses over denominator 2 end fraction close vertical bar plus C close parentheses end cell row blank equals cell 1 half open parentheses x plus 3 close parentheses square root of x squared plus 6 x plus 5 end root minus 2 ln invisible function application open vertical bar square root of x squared plus 6 x plus 5 end root plus open parentheses x plus 3 close parentheses close vertical bar plus C end cell end table end style 

Jadi, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Hasil dari ∫ 4 − 16 x 2 ​ d x adalah ....

30

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia