Iklan

Pertanyaan

Diketahui fungsi f ( x ) = x 2 − 2 x − 3 , x ∈ R . Agar f merupakan fungsi bijektif, tentukan: b. rumus fungsi f − 1 ,

Diketahui fungsi . Agar  merupakan fungsi bijektif, tentukan:
b. rumus fungsi ,

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

12

:

27

:

40

Klaim

Iklan

D. Kamilia

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Pembahasan

Rumus fungsi invers untuk fungsi kuadrat adalah: Karena sehingga diperoleh: Jadi, rumus adalah:

begin mathsize 14px style f open parentheses x close parentheses equals x squared minus 2 x minus 3 comma space x element of straight real numbers end style

Rumus fungsi invers untuk fungsi kuadrat adalah:

begin mathsize 14px style f to the power of negative 1 end exponent open parentheses x close parentheses equals fraction numerator negative b minus square root of b squared minus 4 a open parentheses c minus x close parentheses end root over denominator 2 a end fraction comma space jika space x less or equal than negative fraction numerator b over denominator 2 a end fraction f to the power of negative 1 end exponent open parentheses x close parentheses equals fraction numerator negative b plus square root of b squared minus 4 a open parentheses c minus x close parentheses end root over denominator 2 a end fraction comma space jika space x greater or equal than negative fraction numerator b over denominator 2 a end fraction end style

Karena begin mathsize 14px style a equals 1 comma space b equals negative 2 comma space dan space c equals negative 3 end style sehingga diperoleh:

begin mathsize 14px style table attributes columnalign right center left columnspacing 2px end attributes row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell fraction numerator negative open parentheses negative 2 close parentheses plus-or-minus square root of open parentheses negative 2 close parentheses squared minus 4 open parentheses 1 close parentheses open parentheses open parentheses negative 3 close parentheses minus x close parentheses end root over denominator 2 open parentheses 1 close parentheses end fraction end cell row blank equals cell fraction numerator 2 plus-or-minus square root of 16 plus 4 x end root over denominator 2 end fraction end cell row blank equals cell fraction numerator 2 plus-or-minus square root of 16 plus 4 x end root over denominator 2 end fraction end cell row blank equals cell fraction numerator 2 plus-or-minus square root of 4 open parentheses 4 plus x close parentheses end root over denominator 2 end fraction end cell row blank equals cell fraction numerator 2 plus-or-minus 2 square root of 4 plus x end root over denominator 2 end fraction end cell row blank equals cell 1 plus-or-minus square root of 4 plus x end root end cell end table end style

Jadi, rumus begin mathsize 14px style f to the power of negative 1 end exponent end style adalah:

begin mathsize 14px style table attributes columnalign right center left columnspacing 2px end attributes row cell f to the power of negative 1 end exponent left parenthesis x right parenthesis end cell equals cell 1 minus square root of 4 plus x end root comma space jika space x less or equal than 1 end cell row cell f to the power of negative 1 end exponent left parenthesis x right parenthesis end cell equals cell 1 plus square root of 4 plus x end root comma space jika space x greater or equal than 1 end cell end table end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

4

iyakahkjjla

Jawaban tidak sesuai Pembahasan terpotong Pembahasan tidak menjawab soal Pembahasan tidak lengkap

Iklan

Pertanyaan serupa

Diketahui fungsi f ( x ) = x 2 − 2 x − 3 , x ∈ R . Agar f merupakan fungsi bijektif, tentukan: a. daerah asal dan daerah hasil ,

16

1.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia