Iklan

Pertanyaan

Diketahui dengan k adalah bilangan bulat. Jika , maka k 1 ​ = ...

Diketahui begin mathsize 14px style f open parentheses x close parentheses equals pi cos invisible function application open parentheses 2 k x close parentheses plus fraction numerator sin invisible function application k x over denominator k plus 1 end fraction end style dengan k adalah bilangan bulat. Jika begin mathsize 14px style f to the power of apostrophe open parentheses 2 pi close parentheses equals fraction numerator k plus 2 over denominator k minus 1 end fraction end style , maka  

  1. 2

  2. begin mathsize 14px style 1 half end style 

  3. begin mathsize 14px style 1 fourth end style 

  4. - begin mathsize 14px style 1 half end style

  5. -2

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

23

:

56

:

59

Iklan

M. Robo

Master Teacher

Jawaban terverifikasi

Pembahasan

Diketahui Maka Diketahui pula bahwa Ingat bahwa sin x = sin( x + 2 πk) cos x = cos( x + 2 πk) Dengan k adalah bilangan bulat, sehingga Sehingga

Diketahui

begin mathsize 14px style f open parentheses x close parentheses equals pi cos invisible function application open parentheses 2 k x close parentheses plus fraction numerator sin invisible function application k x over denominator k plus 1 end fraction end style  

Maka

begin mathsize 14px style f to the power of apostrophe open parentheses x close parentheses equals pi open parentheses negative sin invisible function application open parentheses 2 k x close parentheses close parentheses times 2 k plus fraction numerator 1 over denominator k plus 1 end fraction open parentheses cos invisible function application k x times k close parentheses f to the power of apostrophe open parentheses x close parentheses equals negative 2 pi k sin invisible function application open parentheses 2 k x close parentheses plus fraction numerator k cos invisible function application k x over denominator k plus 1 end fraction end style    

Diketahui pula bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f to the power of apostrophe open parentheses 2 pi close parentheses end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 2 k open parentheses 2 pi close parentheses close parentheses plus fraction numerator k cos invisible function application k open parentheses 2 pi close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 4 pi k close parentheses plus fraction numerator k cos invisible function application open parentheses 2 pi k close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell end table end style    

Ingat bahwa

sin x = sin(x + 2πk)

cos x = cos(x + 2πk)

Dengan k adalah bilangan bulat, sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative 2 pi k sin invisible function application open parentheses 4 pi k close parentheses plus fraction numerator k cos invisible function application open parentheses 2 pi k close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 0 plus 2 pi open parentheses 2 k close parentheses close parentheses plus fraction numerator k cos invisible function application open parentheses 0 plus 2 pi open parentheses k close parentheses close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 0 close parentheses plus fraction numerator k cos invisible function application open parentheses 0 close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k open parentheses 0 close parentheses plus fraction numerator k open parentheses 1 close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell fraction numerator k over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell k open parentheses k minus 1 close parentheses end cell equals cell open parentheses k plus 1 close parentheses open parentheses k plus 2 close parentheses end cell row cell k squared minus k end cell equals cell k squared plus 3 k plus 2 end cell row cell negative 4 k end cell equals 2 row k equals cell negative 1 half end cell end table end style         

Sehingga

begin mathsize 14px style 1 over k equals negative 2 end style   

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!