Iklan

Pertanyaan

Diketahui dengan k adalah bilangan bulat. Jika , maka k 1 ​ = ...

Diketahui begin mathsize 14px style f open parentheses x close parentheses equals pi cos invisible function application open parentheses 2 k x close parentheses plus fraction numerator sin invisible function application k x over denominator k plus 1 end fraction end style dengan k adalah bilangan bulat. Jika begin mathsize 14px style f to the power of apostrophe open parentheses 2 pi close parentheses equals fraction numerator k plus 2 over denominator k minus 1 end fraction end style , maka  

  1. 2

  2. begin mathsize 14px style 1 half end style 

  3. begin mathsize 14px style 1 fourth end style 

  4. - begin mathsize 14px style 1 half end style

  5. -2

8 dari 10 siswa nilainya naik

dengan paket belajar pilihan

Habis dalam

01

:

03

:

43

:

34

Klaim

Iklan

M. Robo

Master Teacher

Jawaban terverifikasi

Pembahasan

Diketahui Maka Diketahui pula bahwa Ingat bahwa sin x = sin( x + 2 πk) cos x = cos( x + 2 πk) Dengan k adalah bilangan bulat, sehingga Sehingga

Diketahui

begin mathsize 14px style f open parentheses x close parentheses equals pi cos invisible function application open parentheses 2 k x close parentheses plus fraction numerator sin invisible function application k x over denominator k plus 1 end fraction end style  

Maka

begin mathsize 14px style f to the power of apostrophe open parentheses x close parentheses equals pi open parentheses negative sin invisible function application open parentheses 2 k x close parentheses close parentheses times 2 k plus fraction numerator 1 over denominator k plus 1 end fraction open parentheses cos invisible function application k x times k close parentheses f to the power of apostrophe open parentheses x close parentheses equals negative 2 pi k sin invisible function application open parentheses 2 k x close parentheses plus fraction numerator k cos invisible function application k x over denominator k plus 1 end fraction end style    

Diketahui pula bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f to the power of apostrophe open parentheses 2 pi close parentheses end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 2 k open parentheses 2 pi close parentheses close parentheses plus fraction numerator k cos invisible function application k open parentheses 2 pi close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 4 pi k close parentheses plus fraction numerator k cos invisible function application open parentheses 2 pi k close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell end table end style    

Ingat bahwa

sin x = sin(x + 2πk)

cos x = cos(x + 2πk)

Dengan k adalah bilangan bulat, sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative 2 pi k sin invisible function application open parentheses 4 pi k close parentheses plus fraction numerator k cos invisible function application open parentheses 2 pi k close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 0 plus 2 pi open parentheses 2 k close parentheses close parentheses plus fraction numerator k cos invisible function application open parentheses 0 plus 2 pi open parentheses k close parentheses close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k sin invisible function application open parentheses 0 close parentheses plus fraction numerator k cos invisible function application open parentheses 0 close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell negative 2 pi k open parentheses 0 close parentheses plus fraction numerator k open parentheses 1 close parentheses over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell fraction numerator k over denominator k plus 1 end fraction end cell equals cell fraction numerator k plus 2 over denominator k minus 1 end fraction end cell row cell k open parentheses k minus 1 close parentheses end cell equals cell open parentheses k plus 1 close parentheses open parentheses k plus 2 close parentheses end cell row cell k squared minus k end cell equals cell k squared plus 3 k plus 2 end cell row cell negative 4 k end cell equals 2 row k equals cell negative 1 half end cell end table end style         

Sehingga

begin mathsize 14px style 1 over k equals negative 2 end style   

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Jika f ( x ) = sin x ( sin x + cos x ) , maka f ( x ) adalah....

5

4.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia