Iklan

Iklan

Pertanyaan

Diketahui f ( x ) = 2 x + 3 ; g ( x ) = 3 x − 1 ; dan ( h ∘ g ∘ f ) ( x ) = x + 4 x 2 − 1 ​ . Tentukan nilai h ( − 1 ) .

Diketahui ; dan . Tentukan nilai .

Iklan

S. Nur

Master Teacher

Jawaban terverifikasi

Jawaban

nilai adalah

nilai begin mathsize 14px style bold italic h begin bold style left parenthesis negative 1 right parenthesis end style end style  adalah begin mathsize 14px style bold 1 over bold 2 end style 

Iklan

Pembahasan

Pembahasan
lock

Ingat! Berdasarkan konsep tersebut diperoleh Misalkan , sehingga Maka Jadi, nilai adalah

Ingat!

begin mathsize 14px style open parentheses h ring operator g ring operator f close parentheses open parentheses x close parentheses equals h open parentheses g open parentheses f open parentheses x close parentheses close parentheses close parentheses end style 

Berdasarkan konsep tersebut diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses h ring operator g ring operator f close parentheses open parentheses x close parentheses end cell equals cell h open parentheses g open parentheses f open parentheses x close parentheses close parentheses close parentheses end cell row cell fraction numerator x squared minus 1 over denominator x plus 4 end fraction end cell equals cell h open parentheses g open parentheses 2 x plus 3 close parentheses close parentheses end cell row cell fraction numerator x squared minus 1 over denominator x plus 4 end fraction end cell equals cell h open parentheses 3 open parentheses 2 x plus 3 close parentheses minus 1 close parentheses end cell row cell fraction numerator x squared minus 1 over denominator x plus 4 end fraction end cell equals cell h open parentheses 6 x plus 9 minus 1 close parentheses end cell row cell fraction numerator x squared minus 1 over denominator x plus 4 end fraction end cell equals cell h open parentheses 6 x plus 8 close parentheses end cell end table end style  

Misalkan begin mathsize 14px style 6 x plus 8 equals negative 1 end style, sehingga 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 6 x plus 8 end cell equals cell negative 1 end cell row cell 6 x end cell equals cell negative 9 end cell row x equals cell negative 9 over 6 end cell row x equals cell negative 3 over 2 end cell end table end style 

Maka

  begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell h open parentheses 6 x plus 8 close parentheses end cell equals cell fraction numerator x squared minus 1 over denominator x plus 4 end fraction end cell row cell h open parentheses negative 1 close parentheses end cell equals cell fraction numerator open parentheses negative begin display style 3 over 2 end style close parentheses squared minus 1 over denominator open parentheses negative begin display style 3 over 2 end style close parentheses plus 4 end fraction end cell row blank equals cell fraction numerator begin display style 9 over 4 end style minus 1 over denominator begin display style 5 over 2 end style end fraction end cell row blank equals cell fraction numerator begin display style 5 over 4 end style over denominator begin display style 5 over 2 end style end fraction end cell row blank equals cell 1 half end cell end table end style  

Jadi, nilai begin mathsize 14px style bold italic h begin bold style left parenthesis negative 1 right parenthesis end style end style  adalah begin mathsize 14px style bold 1 over bold 2 end style 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

21

Iklan

Iklan

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia