Iklan

Pertanyaan

Daerah R dibatasi oleh y = b x ​ , y = b x untuk x ∈ [ 0 , 2 ] . Jika volume benda padat yang didapat dengan memutar R terhadap sumbu x adalah π , maka b=.. ..

Daerah R dibatasi oleh untuk Jika volume benda padat yang didapat dengan memutar R terhadap sumbu x adalah , maka b=....

  1. 5

  2. 4

  3. 3

  4. 2

  5. 1

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

04

:

20

:

19

Klaim

Iklan

A. Rizky

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Pembahasan

i right parenthesis C a r i space p e r p o t o n g a n space k u r v a space d a n space g a r i s  y equals y  b square root of x equals b x  square root of x equals x  x minus square root of x equals 0  square root of x open parentheses square root of x minus 1 close parentheses equals 0    M a k a  square root of x equals 0 rightwards arrow x equals 0    D a n  square root of x minus 1 equals 0 rightwards arrow square root of x equals 1 rightwards arrow x equals 1    i i right parenthesis G a m b a r k a n space d a e r a h space R space  D a e r a h space R space d i t u n j u k k a n space o l e h space d a e r a h space y a n g space d i a r s i r space b e r i k u t space i n i space colon

T e r l i h a t space b a h w a space k u r v a space d a n space g a r i s space b e r p o t o n g a n space p a d a space t i t i k space x equals 0 space d a n space x equals 1. space space    i i right parenthesis H i t u n g space v o l u m e space d a r i space b e n d a space p a d a t space y a n g space d i d a p a t space d e n g a n space m e m u t a r space d a e r a h space R space t e r h a d a p space s u m b u minus x space  D a e r a h space R space t e r b a g i space m e n j a d i space 2 comma space y a i t u space p a d a space i n t e r v a l space 0 less or equal than x less or equal than 1 space d a n space 1 less than x less or equal than 2. space space    V o l u m e space b e n d a space p a d a t space p a d a space i n t e r v a l space 0 less or equal than x less or equal than 1 space a d a l a h  V subscript 1 equals pi integral from 0 to 1 of open parentheses b square root of x close parentheses squared minus open parentheses b x close parentheses squared d x equals pi integral from 0 to 1 of b squared x minus b squared x squared d x equals pi open open parentheses b squared over 2 x squared minus b squared over 3 x cubed close parentheses close square brackets subscript 0 superscript 1  equals pi open square brackets open parentheses b squared over 2 open parentheses 1 close parentheses squared minus b squared over 3 open parentheses 1 close parentheses cubed close parentheses minus open parentheses b squared over 2 open parentheses 0 close parentheses squared minus b squared over 3 open parentheses 0 close parentheses cubed close parentheses close square brackets equals pi open square brackets open parentheses b squared over 2 minus b squared over 3 close parentheses minus open parentheses 0 minus 0 close parentheses close square brackets equals fraction numerator b squared pi over denominator 6 end fraction    S e d a n g k a n space v o l u m e space b e n d a space p a d a t space p a d a space i n t e r v a l space 1 less than x less or equal than 2 space a d a l a h  V subscript 2 equals pi integral from 1 to 2 of open parentheses b x close parentheses squared minus open parentheses b square root of x close parentheses squared d x equals pi integral from 1 to 2 of b squared x squared minus b squared x d x equals pi open open parentheses b squared over 3 x cubed minus b squared over 2 x squared close parentheses close square brackets subscript 1 superscript 2  equals pi open square brackets open parentheses b squared over 3 open parentheses 2 close parentheses cubed minus b squared over 2 open parentheses 2 close parentheses squared close parentheses minus open parentheses b squared over 3 open parentheses 1 close parentheses cubed minus b squared over 2 open parentheses 1 close parentheses squared close parentheses close square brackets equals pi open square brackets open parentheses fraction numerator 8 b squared over denominator 3 end fraction minus 2 b squared close parentheses minus open parentheses b squared over 3 minus b squared over 2 close parentheses close square brackets  equals pi open square brackets fraction numerator 2 b squared over denominator 3 end fraction minus open parentheses negative b squared over 6 close parentheses close square brackets equals pi open parentheses fraction numerator 2 b squared over denominator 3 end fraction plus b squared over 6 close parentheses equals fraction numerator 5 b squared pi over denominator 6 end fraction    S e h i n g g a space v o l u m e space b e n d a space p a d a t space p a d a space i n t e r v a l space 0 less or equal than x less or equal than 2 space a d a l a h  V subscript 1 plus V subscript 2 equals fraction numerator b squared pi over denominator 6 end fraction plus fraction numerator 5 b squared pi over denominator 6 end fraction equals b squared pi    i i i right parenthesis B a n d i n g k a n space v o l u m e space y a n g space d i d a p a t k a n space  D a r i space p e r h i t u n g a n space d i d a p a t k a n space v o l u m e space y a i t u space b squared pi  D a r i space s o a l space d i d a p a t k a n space v o l u m e space y a i t u space pi. space  M a k a  b squared pi equals pi  b squared equals 1  b equals plus-or-minus 1

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

19

Iklan

Pertanyaan serupa

Daerah R dibatasi oleh y = b x ​ , y = bx, untuk x ∈ [0,2]. Jika volume benda padat yang didapat dengan memutar R terhadap sumbu x adalah π , maka b = ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia