Iklan

Pertanyaan

Carilah turunan pertama, kedua dan ketiga dari: a. y = e − 4 x cos ( 2 x )

Carilah turunan pertama, kedua dan ketiga dari:

a.  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

13

:

54

:

32

Klaim

Iklan

F. Freelancer6

Master Teacher

Jawaban terverifikasi

Pembahasan

Pembahasan
lock

begin mathsize 11px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis end cell row cell y apostrophe end cell equals cell e to the power of negative 4 x end exponent left parenthesis negative 4 right parenthesis times cos space left parenthesis 2 x right parenthesis plus e to the power of negative 4 x end exponent times left parenthesis negative sin open parentheses 2 x close parentheses right parenthesis times 2 end cell row blank equals cell negative 4 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis space minus 2 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis end cell row blank blank blank row cell y " end cell equals cell left square bracket negative 4 times e to the power of negative 4 x end exponent times open parentheses negative 4 close parentheses times cos open parentheses 2 x close parentheses plus open parentheses negative 4 e to the power of negative 4 x end exponent close parentheses times open parentheses negative sin open parentheses 2 x close parentheses times 2 close parentheses right square bracket minus end cell row blank blank cell left square bracket 2 e to the power of negative 4 x end exponent times open parentheses negative 4 close parentheses times sin open parentheses 2 x close parentheses plus 2 e to the power of negative 4 x end exponent times left parenthesis cos space open parentheses 2 x close parentheses times 2 right parenthesis right square bracket end cell row blank equals cell 16 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis plus 8 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis plus 8 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis minus 4 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis end cell row blank equals cell 12 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis plus 16 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis end cell row blank blank blank row cell y apostrophe apostrophe apostrophe end cell equals cell left square bracket negative 48 e to the power of negative 4 x end exponent cos open parentheses 2 x close parentheses plus 12 e to the power of negative 4 x end exponent open parentheses negative 2 sin open parentheses 2 x close parentheses close parentheses right square bracket plus left square bracket negative 64 e to the power of negative 4 x end exponent sin open parentheses 2 x close parentheses plus right square bracket end cell row blank blank cell 16 e to the power of negative 4 x end exponent left parenthesis 2 cos open parentheses 2 x close parentheses right parenthesis end cell row blank equals cell negative 48 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis minus 24 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis minus 64 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis plus 32 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis end cell row blank equals cell negative 16 e to the power of negative 4 x end exponent cos left parenthesis 2 x right parenthesis minus 88 e to the power of negative 4 x end exponent sin left parenthesis 2 x right parenthesis end cell end table end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Tentukan turunan pertama fungsi berikut, sederhanakan jika mungkin. 4 . f ( t ) = e s e c − 1 t

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia