Iklan

Pertanyaan

Buktikan dengan prinsip induksi matematika: a. 1 + 3 + 5 + ... + ( 2 n − 1 ) + ( 2 n − 3 ) + ... + 3 + 1 = 2 n 2 − 2 n + 1

Buktikan dengan prinsip induksi matematika: 

a.  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

21

:

10

:

26

Klaim

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Jawaban

terbukti bahwa karena hasil ruas kanan dan kiri sama

terbukti bahwa 1 plus 3 plus 5 plus... plus open parentheses 2 straight n minus 1 close parentheses plus open parentheses 2 straight n minus 3 close parentheses plus... plus 3 plus 1 equals 2 straight n squared minus 2 straight n plus 1 karena hasil ruas kanan dan kiri sama

Pembahasan

Pembuktian menggunakan induksi matematika Untuk n = 1 Untuk n = k diasumsikan benar Untuk n = k+1 maka Jadi terbukti bahwa karena hasil ruas kanan dan kiri sama

Pembuktian menggunakan induksi matematika

Untuk n = 1

table attributes columnalign right center left columnspacing 0px end attributes row cell straight P subscript 1 end cell equals cell 2 straight n squared minus 2 straight n plus 1 end cell row blank equals cell 2.1 squared minus 2.1 plus 1 end cell row blank equals cell 2 minus 2 plus 1 end cell row blank equals cell 1 rightwards arrow terbukti end cell end table

Untuk n = k diasumsikan benar

1 plus 3 plus 5 plus... plus open parentheses 2 straight n minus 1 close parentheses plus open parentheses 2 straight n minus 3 close parentheses plus... plus 3 plus 1 equals 2 straight n squared minus 2 straight n plus 1 1 plus 3 plus 5 plus... plus open parentheses 2 straight k minus 1 close parentheses plus open parentheses 2 straight k minus 3 close parentheses plus... plus 3 plus 1 equals 2 straight k squared minus 2 straight k plus 1 rightwards arrow diasumsikan space benar

Untuk n = k+1 maka

table attributes columnalign right center left columnspacing 0px end attributes row cell 1 plus 3 plus 5 plus... plus open parentheses 2 straight n minus 1 close parentheses plus open parentheses 2 straight n minus 3 close parentheses plus... plus 3 plus 1 end cell equals cell 2 straight n squared minus 2 straight n plus 1 end cell row cell 1 plus 3 plus 5 plus... plus open parentheses 2 left parenthesis straight k plus 1 right parenthesis minus 1 close parentheses plus open parentheses 2 left parenthesis straight k plus 1 right parenthesis minus 3 close parentheses plus... plus 3 plus 1 end cell equals cell 2 left parenthesis straight k plus 1 right parenthesis squared minus 2 left parenthesis straight k plus 1 right parenthesis plus 1 end cell row cell 1 plus 3 plus 5 plus... plus open parentheses 2 straight k plus 2 minus 1 close parentheses plus open parentheses 2 straight k plus 2 minus 3 close parentheses plus... plus 3 plus 1 end cell equals cell 2 left parenthesis straight k squared plus 2 straight k plus 1 right parenthesis minus 2 straight k minus 2 plus 1 end cell row cell 1 plus 3 plus 5 plus... plus open parentheses 2 straight k plus 1 close parentheses plus open parentheses 2 straight k minus 1 close parentheses plus... plus 3 plus 1 end cell equals cell 2 straight k squared plus 4 straight k plus 2 minus 2 straight k minus 2 plus 1 end cell row cell 1 plus 3 plus 5 plus... plus open parentheses 2 straight k plus 1 close parentheses plus open parentheses 2 straight k minus 1 close parentheses plus... plus 3 plus 1 end cell equals cell 2 straight k squared plus 2 straight k plus 1 end cell row cell 1 plus 3 plus 5 plus... plus open parentheses 2 straight k minus 1 close parentheses plus open parentheses 2 straight k plus 1 close parentheses plus open parentheses 2 straight k minus 1 close parentheses plus... plus 3 plus 1 end cell equals cell 2 straight k squared plus 2 straight k plus 1 end cell row cell 2 straight k squared minus 2 straight k plus 1 plus open parentheses 2 straight k plus 1 close parentheses plus open parentheses 2 straight k minus 1 close parentheses end cell equals cell 2 straight k squared plus 2 straight k plus 1 end cell row cell 2 straight k squared up diagonal strike negative 2 straight k end strike plus 1 up diagonal strike plus 2 straight k end strike up diagonal strike plus 1 end strike plus 2 straight k up diagonal strike negative 1 end strike end cell equals cell 2 straight k squared plus 2 straight k plus 1 end cell row cell 2 straight k squared plus 2 straight k plus 1 end cell equals cell 2 straight k squared plus 2 straight k plus 1 rightwards arrow terbukti end cell end table

Jadi terbukti bahwa 1 plus 3 plus 5 plus... plus open parentheses 2 straight n minus 1 close parentheses plus open parentheses 2 straight n minus 3 close parentheses plus... plus 3 plus 1 equals 2 straight n squared minus 2 straight n plus 1 karena hasil ruas kanan dan kiri sama

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Enjelina Enjelina

Jawaban tidak sesuai

Iklan

Pertanyaan serupa

Jika , maka pernyataan P k + 1 ​ yang benar adalah ....

1

4.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia