Iklan

Pertanyaan

∫ a rc sin x d x = …

  1. begin mathsize 12px style x space arccos space x plus square root of 1 minus x squared end root plus C end style

  2. begin mathsize 12px style arcsin space x plus square root of 1 minus x squared end root plus C end style

  3. begin mathsize 12px style x space arcsin space x minus square root of 1 minus x squared end root plus C end style

  4. begin mathsize 12px style x space arcsin space x plus square root of 1 minus x squared end root plus C end style

  5. begin mathsize 12px style x space arcsin space x plus 1 half square root of 1 minus x squared end root plus C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

17

:

12

:

07

Klaim

Iklan

I. Roy

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

Pertama – tama cari terlebih dahulu turunan dari arc sin x Misalkan Maka Sekarang dengan menggunakan integral parsial

Pertama – tama cari terlebih dahulu turunan dari arc sin x

Misalkan begin mathsize 12px style y equals arcsin space x end style

begin mathsize 12px style sin space y equals x end style

begin mathsize 12px style fraction numerator d x over denominator d y end fraction equals cos space y end style

Maka begin mathsize 12px style fraction numerator d y over denominator d x end fraction equals fraction numerator 1 over denominator cos space y end fraction equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction end style

Sekarang dengan menggunakan integral parsial

begin mathsize 12px style u equals a r c sin space x d u equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction d x d v equals d x left right double arrow v equals x  integral u d v equals u v minus integral v d u integral arcsin space x space d x equals x space arcsin space x minus integral open parentheses fraction numerator x over denominator square root of 1 minus x squared end root end fraction close parentheses d x integral arcsin space x space d x equals x space arcsin space x minus integral open parentheses fraction numerator x over denominator square root of 1 minus x squared end root end fraction close parentheses fraction numerator d open parentheses 1 minus x squared close parentheses over denominator negative 2 x end fraction integral arcsin space x space d x equals x space arcsin space x plus 1 half integral open parentheses 1 minus x squared close parentheses to the power of negative 1 half end exponent d open parentheses 1 minus x squared close parentheses integral arcsin space x space d x equals x space arcsin space x plus 1 half.2 square root of 1 minus x squared end root plus C integral arcsin space x space d x equals x space arcsin space x plus square root of 1 minus x squared end root plus C end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

6

Kelista Zakaria

Pembahasan lengkap banget dan Mudah dimengerti

Iklan

Pertanyaan serupa

∫ ln x d x = …

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia