Iklan

Pertanyaan

x → π lim ​ x − π sin x − sin π ​ = ...

  1.  negative 2 

  2.  negative 1  

  3. 0  

  4.  1  

  5. 2   

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

01

:

43

:

36

Klaim

Iklan

N. Puspita

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah B.

jawaban yang benar adalah B.

Pembahasan

Pembahasan
lock

Ingat kembali sifat-sifat dan aturan berikut. Dari aturan di atas, maka diperoleh Dengan demikian, . Jadi, jawaban yang benar adalah B.

Ingat kembali sifat-sifat dan aturan berikut.

  • sin space A minus sin space B equals 2 space cos space 1 half left parenthesis A plus B right parenthesis space sin 1 half left parenthesis A minus B right parenthesis     

 

  • limit as x rightwards arrow c of f left parenthesis x right parenthesis times g left parenthesis x right parenthesis equals limit as x rightwards arrow c of f left parenthesis x right parenthesis times limit as x rightwards arrow c of g left parenthesis x right parenthesis

 

  • limit as x rightwards arrow c of fraction numerator sin space a left parenthesis x minus c right parenthesis over denominator b left parenthesis x minus c right parenthesis end fraction equals limit as x rightwards arrow c of fraction numerator space a left parenthesis x minus c right parenthesis over denominator sin space b left parenthesis x minus c right parenthesis end fraction equals a over b

 

  • c o s space pi equals negative 1 

 

Dari aturan di atas, maka diperoleh

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow pi of fraction numerator sin space x minus space sin space pi over denominator x minus pi end fraction end cell equals cell limit as x rightwards arrow pi of fraction numerator 2 space cos space begin display style 1 half end style left parenthesis x plus pi right parenthesis space sin space begin display style 1 half end style left parenthesis x minus pi right parenthesis over denominator x minus pi end fraction end cell row blank equals cell limit as x rightwards arrow pi of space 2 space cos space 1 half left parenthesis x plus pi right parenthesis times limit as x rightwards arrow pi of space fraction numerator sin space begin display style 1 half end style left parenthesis x minus pi right parenthesis over denominator x minus pi end fraction end cell row blank equals cell 2 space cos space 1 half left parenthesis pi plus pi right parenthesis times fraction numerator begin display style 1 half end style over denominator 1 end fraction end cell row blank equals cell 2 space cos space 1 half left parenthesis 2 pi right parenthesis times 1 half end cell row blank equals cell 2 times cos space pi times 1 half end cell row blank equals cell 2 times left parenthesis negative 1 right parenthesis times 1 half end cell row blank equals cell negative 1 end cell end table end style      

Dengan demikian, limit as x rightwards arrow pi of fraction numerator sin space x minus sin space pi over denominator x minus pi end fraction equals negative 1.

Jadi, jawaban yang benar adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Tentukanlah h → 0 lim ​ h sin ( x + h ) − sin x ​

3

4.9

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia