x→0lim​ sin223​x (1−sec22x)sin43x​=...

Pertanyaan

limit as x rightwards arrow 0 of space fraction numerator sin to the power of 4 3 x over denominator sin squared begin display style 3 over 2 end style x space left parenthesis 1 minus sec squared 2 x right parenthesis end fraction equals... 

  1. 9 

  2. 9 over 4 

  3. 9 over 16 

  4. negative 9 over 4 

  5. negative 9 

W. Rohmiyati

Master Teacher

Mahasiswa/Alumni Universitas Langlangbuana

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah E. 

Pembahasan

Untuk mengerjakan soal limit fungsi trigonometri, kita siubtitusi terlebih dahulu menjadi: 

table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow 0 of space fraction numerator sin to the power of 4 3 x over denominator sin squared begin display style 3 over 2 end style x space left parenthesis 1 minus sec squared 2 x right parenthesis end fraction end cell equals cell fraction numerator sin to the power of 4 3 open parentheses 0 close parentheses over denominator sin squared begin display style 3 over 2 end style left parenthesis 0 right parenthesis space left parenthesis 1 minus sec squared 2 left parenthesis 0 right parenthesis end fraction end cell row blank equals cell fraction numerator sin to the power of 4 left parenthesis 0 right parenthesis over denominator sin squared left parenthesis 0 right parenthesis space left parenthesis 1 minus sec squared left parenthesis 0 right parenthesis right parenthesis end fraction end cell row blank equals cell fraction numerator left parenthesis sin space 0 right parenthesis to the power of 4 over denominator left parenthesis sin space 0 right parenthesis squared space left parenthesis 1 minus left parenthesis sec space 0 right parenthesis squared right parenthesis end fraction end cell row blank equals cell fraction numerator 0 to the power of 4 over denominator 0 squared left parenthesis 1 minus 1 squared right parenthesis end fraction end cell row blank equals cell fraction numerator 0 over denominator 0 left parenthesis 0 right parenthesis end fraction end cell row blank equals cell 0 over 0 space space left parenthesis Nilai space tak space tentu right parenthesis end cell end table 

Karena diperoleh bentuk tak tentu, maka limit fungsi trigonometri diubah lalu gunakan konsep 

limit as x rightwards arrow 0 of fraction numerator sin space a x over denominator sin space b x end fraction equals a over b limit as x rightwards arrow 0 of space fraction numerator sin space a x over denominator tan space b x end fraction equals a over b  

serta identitas trigonometri berikut ini

table attributes columnalign right center left columnspacing 0px end attributes row cell tan squared x plus 1 end cell equals cell sec squared x end cell row cell 1 minus sec squared x end cell equals cell negative tan squared x end cell end table 

Setelah itu, maka soal di atas diselesaikan dengan cara berikut ini: 

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell limit as x rightwards arrow 0 of space fraction numerator sin to the power of 4 3 x over denominator sin squared begin display style 3 over 2 end style x space left parenthesis 1 minus sec squared 2 x right parenthesis end fraction end cell row blank equals cell limit as x rightwards arrow 0 of space fraction numerator sin 3 x times sin 3 x times sin 3 x times sin 3 x over denominator sin begin display style 3 over 2 end style x times sin begin display style 3 over 2 end style x space left parenthesis negative tan squared 2 x right parenthesis end fraction end cell row blank equals cell limit as x rightwards arrow 0 of space fraction numerator sin 3 x times sin 3 x times sin 3 x times sin 3 x over denominator sin begin display style 3 over 2 end style x times sin begin display style 3 over 2 end style x times negative tan 2 x times tan 2 x end fraction end cell row blank equals cell limit as x rightwards arrow 0 of space fraction numerator up diagonal strike sin 3 up diagonal strike x times up diagonal strike sin 3 up diagonal strike x times up diagonal strike sin 3 up diagonal strike x times up diagonal strike sin 3 up diagonal strike x over denominator up diagonal strike sin begin display style 3 over 2 end style up diagonal strike x times up diagonal strike sin 3 over 2 space up diagonal strike x times negative up diagonal strike tan 2 up diagonal strike x times tan 2 up diagonal strike x end fraction end cell row blank equals cell fraction numerator 3 times 3 times 3 times 3 over denominator begin display style fraction numerator 3 over denominator up diagonal strike 2 end fraction end style times begin display style fraction numerator 3 over denominator up diagonal strike 2 end fraction end style times up diagonal strike left parenthesis negative 2 right parenthesis end strike times up diagonal strike 2 end fraction end cell row blank equals cell fraction numerator up diagonal strike 3 times 3 end strike times 3 times 3 over denominator up diagonal strike 3 times 3 end strike times left parenthesis negative 1 right parenthesis end fraction end cell row blank equals cell fraction numerator 3 times 3 over denominator negative 1 end fraction end cell row blank equals cell negative 9 end cell end table   

 

Oleh karena itu, jawaban yang benar adalah E. 

41

0.0 (0 rating)

Pertanyaan serupa

Nilai x→0lim​ 2xsin 4x1−cos 4x​ = .....

61

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia