Iklan

Pertanyaan

2. Jika sin ( θ + B ) sin ( θ + A ) ​ = sin 2 B sin 2 A ​ ​ , buktikan bahwa: tan 2 θ = tan A ⋅ tan B .

2. Jika , buktikan bahwa: .space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

00

:

44

:

59

Klaim

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

telah ditunjukan bahwa tan 2 θ = tan A ⋅ tan B .

telah ditunjukan bahwa .space 

Pembahasan

Ingat kembali: sin ( α + β ) ​ = ​ sin α ⋅ cos β + cos α ⋅ sin β ​ sin ( α − β ) ​ = ​ sin α ⋅ cos β − cos α ⋅ sin β ​ ​​​​ sin 2 α = 2 ⋅ sin α ⋅ cos α tan α = cos α sin α ​ Dengan menggunakan rumus-rumus di atas, dapat diperoleh s i n ( θ + B ) s i n ( θ + A ) ​ ( s i n ( θ + B ) s i n ( θ + A ) ​ ) 2 ( s i n ( θ + B ) ) 2 ( s i n ( θ + A ) ) 2 ​ sin 2 B ⋅ ( sin ( θ + A ) ) 2 ​ = = = = ​ s i n 2 B s i n 2 A ​ ​ s i n 2 B s i n 2 A ​ s i n 2 B s i n 2 A ​ sin 2 A ⋅ ( sin ( θ + B ) ) 2 ( 1 ) ​ Dengan menjabarkan ruas kiri pada (1), diperoleh: ​ = = = = = = ​ sin 2 B ⋅ ( sin ( θ + A ) ) 2 sin 2 B ⋅ ( sin θ ⋅ cos A + cos θ ⋅ sin A ) 2 sin 2 B ⋅ ( sin 2 θ ⋅ cos 2 A + cos 2 θ ⋅ sin 2 A + 2 ⋅ sin θ ⋅ cos A ⋅ cos θ ⋅ sin A ) sin 2 B ⋅ ( sin 2 θ ⋅ cos 2 A + cos 2 θ ⋅ sin 2 A + 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ ) sin 2 B ⋅ sin 2 θ ⋅ cos 2 A + sin 2 B ⋅ cos 2 θ ⋅ sin 2 A + sin 2 B ⋅ 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ 2 ⋅ sin B ⋅ cos B ⋅ sin 2 θ ⋅ cos 2 A + 2 ⋅ sin B ⋅ cos B ⋅ cos 2 θ ⋅ sin 2 A + 2 ⋅ sin B ⋅ cos B ⋅ 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ 2 ⋅ sin B ⋅ cos B ⋅ sin 2 θ ⋅ cos 2 A + 2 ⋅ sin B ⋅ cos B ⋅ cos 2 θ ⋅ sin 2 A + 4 ⋅ sin B ⋅ cos B ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ ( 2 ) ​ Dengan menjabarkan ruas kananpada (1), diperoleh: ​ = = = = = = ​ sin 2 A ⋅ ( sin ( θ + B ) ) 2 sin 2 A ( sin θ ⋅ cos B + cos θ ⋅ sin B ) 2 sin 2 A ⋅ ( sin 2 θ ⋅ cos 2 B + cos 2 θ ⋅ sin 2 B + 2 ⋅ sin θ ⋅ cos B ⋅ cos θ ⋅ sin B ) sin 2 A ⋅ ( sin 2 θ ⋅ cos 2 B + cos 2 θ ⋅ sin 2 B + 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ ) sin 2 A ⋅ sin 2 θ ⋅ cos 2 B + sin 2 B ⋅ cos 2 θ ⋅ sin 2 B + sin 2 A ⋅ 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ 2 ⋅ sin A ⋅ cos A ⋅ sin 2 θ ⋅ cos 2 B + 2 ⋅ sin A ⋅ cos A ⋅ cos 2 θ ⋅ sin 2 B + 2 ⋅ sin A ⋅ cos A ⋅ 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ 2 ⋅ sin A ⋅ cos A ⋅ sin 2 θ ⋅ cos 2 B + 2 ⋅ sin A ⋅ cos A ⋅ cos 2 θ ⋅ sin 2 B + 4 ⋅ sin A ⋅ cos A ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ ( 3 ) ​ Ubah (2) dan (3) pada (1) sehingga diperoleh: c o s 2 θ s i n 2 θ ​ ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 maka,diperoleh: ( tan θ ) 2 tan 2 θ ​ = = = = = = = ​ ( 2 ⋅ s i n B ⋅ c o s B ⋅ c o s 2 A − 2 ⋅ s i n A ⋅ c o s A ⋅ c o s 2 B ) ( 2 ⋅ s i n A ⋅ c o s A ⋅ s i n 2 B − 2 ⋅ s i n B ⋅ c o s B ⋅ s i n 2 A ) ​ 2 ⋅ c o s A ⋅ c o s B ⋅ ( s i n B ⋅ c o s A − s i n A ⋅ c o s B ) 2 ⋅ s i n A ⋅ s i n B ⋅ ( c o s A ⋅ s i n B − c o s B ⋅ s i n A ) ​ 2 ​ ⋅ c o s A ⋅ c o s B ⋅ ( c o s A ⋅ s i n B − s i n A ⋅ c o s B ) ​ 2 ​ ⋅ s i n A ⋅ s i n B ⋅ ( c o s A ⋅ s i n B − s i n A ⋅ c o s B ) ​ ​ c o s A ⋅ c o s B s i n A ⋅ s i n B ​ c o s A s i n A ​ ⋅ c o s B s i n B ​ karena t a n α = c o s α s i n α ​ tan A ⋅ tan B tan A ⋅ tan B ​ Dengan demikian, telah ditunjukan bahwa tan 2 θ = tan A ⋅ tan B .

Ingat kembali:

  •  
  • ​​​​

Dengan menggunakan rumus-rumus di atas, dapat diperoleh 

 

Dengan menjabarkan ruas kiri pada (1), diperoleh:

    

Dengan menjabarkan ruas kanan pada (1), diperoleh:

 

Ubah (2) dan (3) pada (1) sehingga diperoleh:

  

Dengan demikian, telah ditunjukan bahwa .space 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

1. Jika tan β = 1 + tan α ⋅ tan γ tan α + tan γ ​ , tunjukkan bahwa: sin 2 β = 1 + sin 2 α ⋅ sin 2 γ sin 2 α + sin 2 γ ​ .

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia