Iklan

Pertanyaan

2. Jika sin ( θ + B ) sin ( θ + A ) ​ = sin 2 B sin 2 A ​ ​ , buktikan bahwa: tan 2 θ = tan A ⋅ tan B .

2. Jika , buktikan bahwa: .space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

00

:

35

:

48

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

telah ditunjukan bahwa tan 2 θ = tan A ⋅ tan B .

telah ditunjukan bahwa .space 

Pembahasan

Ingat kembali: sin ( α + β ) ​ = ​ sin α ⋅ cos β + cos α ⋅ sin β ​ sin ( α − β ) ​ = ​ sin α ⋅ cos β − cos α ⋅ sin β ​ ​​​​ sin 2 α = 2 ⋅ sin α ⋅ cos α tan α = cos α sin α ​ Dengan menggunakan rumus-rumus di atas, dapat diperoleh s i n ( θ + B ) s i n ( θ + A ) ​ ( s i n ( θ + B ) s i n ( θ + A ) ​ ) 2 ( s i n ( θ + B ) ) 2 ( s i n ( θ + A ) ) 2 ​ sin 2 B ⋅ ( sin ( θ + A ) ) 2 ​ = = = = ​ s i n 2 B s i n 2 A ​ ​ s i n 2 B s i n 2 A ​ s i n 2 B s i n 2 A ​ sin 2 A ⋅ ( sin ( θ + B ) ) 2 ( 1 ) ​ Dengan menjabarkan ruas kiri pada (1), diperoleh: ​ = = = = = = ​ sin 2 B ⋅ ( sin ( θ + A ) ) 2 sin 2 B ⋅ ( sin θ ⋅ cos A + cos θ ⋅ sin A ) 2 sin 2 B ⋅ ( sin 2 θ ⋅ cos 2 A + cos 2 θ ⋅ sin 2 A + 2 ⋅ sin θ ⋅ cos A ⋅ cos θ ⋅ sin A ) sin 2 B ⋅ ( sin 2 θ ⋅ cos 2 A + cos 2 θ ⋅ sin 2 A + 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ ) sin 2 B ⋅ sin 2 θ ⋅ cos 2 A + sin 2 B ⋅ cos 2 θ ⋅ sin 2 A + sin 2 B ⋅ 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ 2 ⋅ sin B ⋅ cos B ⋅ sin 2 θ ⋅ cos 2 A + 2 ⋅ sin B ⋅ cos B ⋅ cos 2 θ ⋅ sin 2 A + 2 ⋅ sin B ⋅ cos B ⋅ 2 ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ 2 ⋅ sin B ⋅ cos B ⋅ sin 2 θ ⋅ cos 2 A + 2 ⋅ sin B ⋅ cos B ⋅ cos 2 θ ⋅ sin 2 A + 4 ⋅ sin B ⋅ cos B ⋅ sin A ⋅ cos A ⋅ sin θ ⋅ cos θ ( 2 ) ​ Dengan menjabarkan ruas kananpada (1), diperoleh: ​ = = = = = = ​ sin 2 A ⋅ ( sin ( θ + B ) ) 2 sin 2 A ( sin θ ⋅ cos B + cos θ ⋅ sin B ) 2 sin 2 A ⋅ ( sin 2 θ ⋅ cos 2 B + cos 2 θ ⋅ sin 2 B + 2 ⋅ sin θ ⋅ cos B ⋅ cos θ ⋅ sin B ) sin 2 A ⋅ ( sin 2 θ ⋅ cos 2 B + cos 2 θ ⋅ sin 2 B + 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ ) sin 2 A ⋅ sin 2 θ ⋅ cos 2 B + sin 2 B ⋅ cos 2 θ ⋅ sin 2 B + sin 2 A ⋅ 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ 2 ⋅ sin A ⋅ cos A ⋅ sin 2 θ ⋅ cos 2 B + 2 ⋅ sin A ⋅ cos A ⋅ cos 2 θ ⋅ sin 2 B + 2 ⋅ sin A ⋅ cos A ⋅ 2 ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ 2 ⋅ sin A ⋅ cos A ⋅ sin 2 θ ⋅ cos 2 B + 2 ⋅ sin A ⋅ cos A ⋅ cos 2 θ ⋅ sin 2 B + 4 ⋅ sin A ⋅ cos A ⋅ sin B ⋅ cos B ⋅ sin θ ⋅ cos θ ( 3 ) ​ Ubah (2) dan (3) pada (1) sehingga diperoleh: c o s 2 θ s i n 2 θ ​ ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 ( c o s θ s i n θ ​ ) 2 maka,diperoleh: ( tan θ ) 2 tan 2 θ ​ = = = = = = = ​ ( 2 ⋅ s i n B ⋅ c o s B ⋅ c o s 2 A − 2 ⋅ s i n A ⋅ c o s A ⋅ c o s 2 B ) ( 2 ⋅ s i n A ⋅ c o s A ⋅ s i n 2 B − 2 ⋅ s i n B ⋅ c o s B ⋅ s i n 2 A ) ​ 2 ⋅ c o s A ⋅ c o s B ⋅ ( s i n B ⋅ c o s A − s i n A ⋅ c o s B ) 2 ⋅ s i n A ⋅ s i n B ⋅ ( c o s A ⋅ s i n B − c o s B ⋅ s i n A ) ​ 2 ​ ⋅ c o s A ⋅ c o s B ⋅ ( c o s A ⋅ s i n B − s i n A ⋅ c o s B ) ​ 2 ​ ⋅ s i n A ⋅ s i n B ⋅ ( c o s A ⋅ s i n B − s i n A ⋅ c o s B ) ​ ​ c o s A ⋅ c o s B s i n A ⋅ s i n B ​ c o s A s i n A ​ ⋅ c o s B s i n B ​ karena t a n α = c o s α s i n α ​ tan A ⋅ tan B tan A ⋅ tan B ​ Dengan demikian, telah ditunjukan bahwa tan 2 θ = tan A ⋅ tan B .

Ingat kembali:

  •  
  • ​​​​

Dengan menggunakan rumus-rumus di atas, dapat diperoleh 

 

Dengan menjabarkan ruas kiri pada (1), diperoleh:

    

Dengan menjabarkan ruas kanan pada (1), diperoleh:

 

Ubah (2) dan (3) pada (1) sehingga diperoleh:

  

Dengan demikian, telah ditunjukan bahwa .space 

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!