Iklan

Pertanyaan

Question number 64-66 are based on the following passage.
 

    Among the speculative questions which arise in connection with the study of arithmetic from a historical standpoint, the origin of number is one that has provoked much lively discussion, and has led to a great amount of learned research among the primitive and savage languages of the human race. A few simple considerations will, however, show that such research must necessarily leave this question entirely unsettled, and will indicate clearly that it is, from the very nature of things, a question to which no definite and final answer can be given. Among the barbarous tribes whose languages have been studied, even in a most cursory manner, none have ever been discovered which did not show some familiarity with the number concept. The knowledge thus indicated has often proved to be most limited; not extending beyond the numbers 1 and 2, or 1, 2, and 3. At first thought it seems quite inconceivable that any human being should be destitute of the power of counting beyond 2. But such is the case; and in a few instances languages have been found to be absolutely destitute of pure numeral words.

    These facts must of necessity deter the mathematician from seeking to push his investigation too far back toward the very origin of num er. Philosophers have endeavoured to establish certain propositions concerning this subject, but, as might have been expected, have failed to reach any common ground of agreement. Whewell has maintained that "such propositions as that two and three make five are necessary truths, containing in them an element of certainty beyond that which mere experience can give." Mill, on the other hand, argues that any such statement merely expresses a truth derived from early and constant experience; and in this view he is heartily supported by Tylor.

    But why this question should provoke controversy, it is difficult for the mathematician to understand. Either view would seem to be correct, according to the standpoint from which the question is approached. We know of no language in which the suggestion of number does not a ppear, and we must admit that the words which give expression to the num ber sense would be among the early words to be formed in any language. They express ideas which are, at first, wholly concrete, which are of the greatest possible simplicity, and which seem in many ways to be clearly understood, even by the higher orders of the brute creation. The origin of num ber would in itself, then, appear to lie beyond the proper limits of inquiry; and the primitive conception of number to be fundamental with human thought.

What does the line, in the third paragraph, 'primitive conception of number to be fundamental with human thought' mean?

What does the line, in the third paragraph, 'primitive conception of number to be fundamental with human thought' mean?

  1. Numbers are an inevitable creation of every language.

  2. Numbers have been a conscious creation of every language.

  3. Numbers have been interpreted differently by different tribes.

  4. There is a perennial debate over the origin of numbers.

  5. Number were incorporated strategically by the primitive tribes.

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

04

:

25

:

18

Klaim

Iklan

B. Atlaliust

Master Teacher

Mahasiswa/Alumni Universitas Negeri Medan

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah A.

jawaban yang benar adalah A.

Pembahasan

Jawaban dari soal ini adalah A. Soal menanyakan maksud dari frasa pada soal. Terjemahan kalimat soal adalah "Apa yang dimaksud dengan baris, dalam alinea ketiga, 'konsepsi primitif tentang bilangan yang menjadi dasar pemikiran manusia?" Frasa tersebut memiliki makna bahwa konsep bilangan/angka yang dikenal oleh suku-suku primitif berhubungan dengan pemikiran dasar manusia, yang juga menandakan bahwa setiap manusia pasti memiliki bahasa, dan angka/bilangan merupakan hasil ciptaan dari sebuah bahasa. Pilihan jawaban yang sesuai dengan pernyataan tersebut adalah "Numbers are an inevitable creation of every language." Jadi, jawaban yang benar adalah A.

Jawaban dari soal ini adalah A.

Soal menanyakan maksud dari frasa pada soal.

Terjemahan kalimat soal adalah "Apa yang dimaksud dengan baris, dalam alinea ketiga, 'konsepsi primitif tentang bilangan yang menjadi dasar pemikiran manusia?"

Frasa tersebut memiliki makna bahwa konsep bilangan/angka yang dikenal oleh suku-suku primitif berhubungan dengan pemikiran dasar manusia, yang juga menandakan bahwa setiap manusia pasti memiliki bahasa, dan angka/bilangan merupakan hasil ciptaan dari sebuah bahasa.

Pilihan jawaban yang sesuai dengan pernyataan tersebut adalah "Numbers are an inevitable creation of every language."

Jadi, jawaban yang benar adalah A.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Paragraph 2 exemplifies the idea about classification that ....

18

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia