Iklan

Pertanyaan

Turunan pertama dari fungsi f ( x ) = ln x ⋅ lo g x adalah ....

Turunan pertama dari fungsi  adalah ....

  1. begin mathsize 12px style f apostrophe open parentheses x close parentheses equals fraction numerator ln space x over denominator x end fraction end style

  2. begin mathsize 12px style f apostrophe open parentheses x close parentheses equals fraction numerator 2 ln space x over denominator x end fraction end style

  3. begin mathsize 12px style f apostrophe open parentheses x close parentheses equals fraction numerator 2 over denominator x ln space x end fraction end style

  4. begin mathsize 12px style f apostrophe open parentheses x close parentheses equals fraction numerator log space x over denominator x end fraction end style

  5. begin mathsize 12px style f apostrophe open parentheses x close parentheses equals fraction numerator 2 log space x over denominator x end fraction end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

11

:

42

:

11

Klaim

Iklan

S. Nur

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah E.

jawaban yang tepat adalah E.

Pembahasan

Misalkan u(x) = ln ⁡x dan . Didapat bahwa dan . Oleh karena itu, didapat Ingat bahwa . Oleh karena itu, Jadi, jawaban yang tepat adalah E.

Misalkan u(x) = ln ⁡x dan begin mathsize 12px style v open parentheses x close parentheses equals log invisible function application x equals log presubscript blank presuperscript 10 invisible function application x end style. Didapat bahwa begin mathsize 12px style u to the power of apostrophe open parentheses x close parentheses equals 1 over x end style dan begin mathsize 12px style v to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator x ln invisible function application 10 end fraction end style.

Oleh karena itu, didapat

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses x close parentheses end cell equals cell ln invisible function application x times log invisible function application x end cell row cell f open parentheses x close parentheses end cell equals cell u open parentheses x close parentheses v open parentheses x close parentheses end cell row cell f to the power of apostrophe open parentheses x close parentheses end cell equals cell u to the power of apostrophe open parentheses x close parentheses v open parentheses x close parentheses plus u open parentheses x close parentheses v to the power of apostrophe open parentheses x close parentheses end cell row cell f to the power of apostrophe open parentheses x close parentheses end cell equals cell 1 over x times log invisible function application x plus ln invisible function application x times fraction numerator 1 over denominator x ln invisible function application 10 end fraction end cell end table end style

Ingat bahwa begin mathsize 12px style fraction numerator ln invisible function application a over denominator ln invisible function application b end fraction equals log presubscript blank presuperscript b invisible function application a end style. Oleh karena itu,

begin mathsize 12px style f to the power of apostrophe open parentheses x close parentheses equals 1 over x times log invisible function application x plus ln invisible function application x times fraction numerator 1 over denominator x ln invisible function application 10 end fraction f to the power of apostrophe open parentheses x close parentheses equals 1 over x times log invisible function application x plus 1 over x times fraction numerator ln invisible function application x over denominator ln invisible function application 10 end fraction f to the power of apostrophe open parentheses x close parentheses equals 1 over x times log invisible function application x plus 1 over x times log presubscript blank presuperscript 10 invisible function application x f to the power of apostrophe open parentheses x close parentheses equals 1 over x times log invisible function application x plus 1 over x times log invisible function application x f to the power of apostrophe open parentheses x close parentheses equals 2 times 1 over x times log invisible function application x f to the power of apostrophe open parentheses x close parentheses equals fraction numerator 2 log invisible function application x over denominator x end fraction end style

Jadi, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Turunan pertama dari fungsi adalah ....

1

4.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia