Iklan

Pertanyaan

Turunan pertama f ( x ) = x + 1 x 2 + 2 x − 3 ​ , adalah f’(x) =.…

Turunan pertama , adalah f’(x) =.…

  1. fraction numerator 2 over denominator x squared plus 2 x plus 1 end fraction

  2. fraction numerator 2 x plus 2 over denominator x squared plus 2 x plus 1 end fraction

  3. fraction numerator x squared plus 2 x plus 5 over denominator x squared plus 2 x plus 1 end fraction

  4. fraction numerator x squared plus 6 x minus 1 over denominator x squared plus 2 x plus 1 end fraction

  5. fraction numerator x squared plus 6 x plus 5 over denominator x squared plus 2 x plus 1 end fraction

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

11

:

31

:

54

Klaim

Iklan

H. Nufus

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

Misalkan u = x 2 + 2x – 3 dan v = x + 1, maka:

Misalkan u = x2 + 2x – 3 dan v = x + 1, maka:

f apostrophe left parenthesis x right parenthesis equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction equals fraction numerator open parentheses 2 x plus 2 close parentheses left parenthesis x plus 1 right parenthesis minus 1 left parenthesis x squared plus 2 x minus 3 right parenthesis over denominator left parenthesis x plus 1 right parenthesis squared end fraction equals fraction numerator 2 x squared plus 4 x plus 2 minus x squared minus 2 x plus 3 over denominator open parentheses x plus 1 close parentheses squared end fraction equals fraction numerator x squared plus 2 x plus 5 over denominator x squared plus 2 x plus 1 end fraction

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Manakah di bawah ini yang merupakan pernyataan yang benar : f ( x ) = h → 0 lim ​ h f ( x + h ) − f ( x ) ​ Jika f(x) = xn, maka f’(x) = n.xn-1 Jika f(x) = {u(x)}n, maka f’(x) = n.{u(x)}n-...

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia