Iklan

Iklan

Pertanyaan

Tentukan antiturunan f ( x ) dengan memanfaatkan turunan fungsi g ( x ) jika f ( x ) = ( x − 2 ) − 5 dan g ( x ) = ( x − 2 ) − 4

Tentukan antiturunan  dengan memanfaatkan turunan fungsi  jika  dan 

  1. ...space 

  2. ...space 

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

Jika Sehingga, Maka,

Jika

begin mathsize 14px style g open parentheses x close parentheses equals left parenthesis x minus 2 right parenthesis to the power of negative 4 end exponent g apostrophe open parentheses x close parentheses equals negative 4 left parenthesis x minus 2 right parenthesis to the power of negative 4 minus 1 end exponent g apostrophe open parentheses x close parentheses equals negative 4 left parenthesis x minus 2 right parenthesis to the power of negative 5 end exponent end style

Sehingga,

begin mathsize 14px style f open parentheses x close parentheses equals left parenthesis x minus 2 right parenthesis to the power of negative 5 end exponent end style

Maka,

begin mathsize 14px style integral left parenthesis x minus 2 right parenthesis to the power of negative 5 end exponent d x equals space m i s a l blank t equals left parenthesis x minus 2 right parenthesis equals space integral t to the power of negative 5 end exponent blank d t equals space space open parentheses 1 cross times blank fraction numerator 1 over denominator negative 5 plus 1 end fraction t to the power of negative 5 plus 1 end exponent close parentheses plus C equals space space open parentheses 1 cross times fraction numerator 1 over denominator negative 4 end fraction t to the power of negative 4 end exponent close parentheses plus C equals space space open parentheses negative 1 fourth t to the power of negative 4 end exponent close parentheses plus C equals space minus 1 fourth bullet open parentheses x minus 2 close parentheses to the power of negative 4 end exponent equals space minus 1 fourth bullet g left parenthesis x right parenthesis equals space minus fraction numerator 1 over denominator 4 open parentheses x minus 2 close parentheses to the power of 4 end fraction plus C end style

Latihan Bab

Pengenalan Integral

Integral Tak Tentu

Integral Substitusi

Aplikasi Integral Tak Tentu

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

47

Iklan

Iklan

Pertanyaan serupa

Tentukan antiturunan f ( x ) dengan memanfaatkan turunan fungsi g ( x ) jika f ( x ) = ( x + 2 ) 3 dan g ( x ) = ( x + 2 ) 4

43

5.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia