Iklan

Iklan

Pertanyaan

Tentukan antiturunan dari f ( x ) = 5 x 3 1 ​

Tentukan antiturunan dari 

Iklan

F. Ayudhita

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

Pembahasan
lock

Sehingga, antiturunan dari adalah Maka, antiturunan dari adalah

begin mathsize 14px style F left parenthesis x right parenthesis equals x to the power of begin inline style 4 over 3 end style end exponent f apostrophe left parenthesis x right parenthesis equals 4 over 3 x to the power of begin inline style 1 third end style end exponent end style 

Sehingga, antiturunan dari begin mathsize 14px style f apostrophe left parenthesis x right parenthesis equals 4 over 3 x to the power of begin inline style 1 third end style end exponent end style adalah begin mathsize 14px style F left parenthesis x right parenthesis equals x to the power of begin inline style 4 over 3 end style end exponent plus C end style 

Maka, antiturunan dari begin mathsize 14px style f left parenthesis x right parenthesis equals 5 x to the power of begin inline style 1 third end style end exponent end style adalah

size 14px f size 14px left parenthesis size 14px x size 14px right parenthesis size 14px equals size 14px 5 size 14px x to the power of begin mathsize 14px inline style 1 third end style end exponent size 14px f size 14px left parenthesis size 14px x size 14px right parenthesis size 14px equals size 14px 5 begin mathsize 14px style left parenthesis 3 over 4 right parenthesis end style begin mathsize 14px style left parenthesis 4 over 3 x to the power of begin inline style 1 third end style end exponent right parenthesis end style size 14px plus size 14px C F size 14px left parenthesis size 14px x size 14px right parenthesis size 14px equals size 14px 15 over size 14px 4 size 14px x to the power of begin mathsize 14px inline style 4 over 3 end style end exponent size 14px plus size 14px C size 14px F size 14px left parenthesis size 14px x size 14px right parenthesis size 14px equals fraction numerator size 14px 15 size 14px x root index size 14px 3 of size 14px x over denominator size 14px 4 end fraction size 14px plus size 14px C   

Latihan Bab

Pengenalan Integral

Integral Tak Tentu

Integral Substitusi

Aplikasi Integral Tak Tentu

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

34

Iklan

Iklan

Pertanyaan serupa

Tentutan antiturunan dari c. f ( x ) = 4 x

19

0.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia