Iklan

Pertanyaan

Sederhanakan pemangkatan bilangan-bilangan berikut! 3. ⎝ ⎛ ​ y 2 2 1 ​ x − 3 2 ​ ​ ⎠ ⎞ ​ − 4

Sederhanakan pemangkatan bilangan-bilangan berikut!

3.

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

16

:

26

:

15

Klaim

Iklan

D. Nuryani

Master Teacher

Mahasiswa/Alumni Universitas Padjadjaran

Jawaban terverifikasi

Jawaban

bentuk sederhana dari adalah .

bentuk sederhana dari open parentheses x to the power of negative begin display style 2 over 3 end style end exponent over y to the power of 2 begin display style 1 half end style end exponent close parentheses to the power of negative 4 end exponent adalah table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell x squared space cube root of x squared end root y to the power of 10 end cell end table.

Pembahasan

Sebelum menjawab soal, ingatlah sifat-sifat bilangan berpangkat pecahan berikut. Berdasarkan sifat-sifat di atas, maka: Dengan demikian, bentuk sederhana dari adalah .

Sebelum menjawab soal, ingatlah sifat-sifat bilangan berpangkat pecahan berikut.

left parenthesis straight i right parenthesis space a to the power of m over n end exponent equals n-th root of a to the power of m end root left parenthesis ii right parenthesis space open parentheses a to the power of m over n end exponent close parentheses to the power of p equals a to the power of m over n cross times p end exponent left parenthesis iii right parenthesis space a to the power of negative m end exponent equals 1 over a to the power of m left parenthesis iv right parenthesis space open parentheses a to the power of begin display style m over n end style end exponent over b to the power of begin display style r over s end style end exponent close parentheses to the power of p equals open parentheses a to the power of begin display style m over n end style end exponent close parentheses to the power of p over open parentheses b to the power of begin display style r over s end style end exponent close parentheses to the power of p

Berdasarkan sifat-sifat di atas, maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses x to the power of negative begin display style 2 over 3 end style end exponent over y to the power of 2 begin display style 1 half end style end exponent close parentheses to the power of negative 4 end exponent end cell equals cell open parentheses x to the power of negative 2 over 3 end exponent close parentheses to the power of negative 4 end exponent over open parentheses y to the power of 2 1 half end exponent close parentheses to the power of negative 4 end exponent end cell row blank equals cell x to the power of negative begin display style 2 over 3 end style cross times open parentheses negative 4 close parentheses end exponent over y to the power of 2 begin display style 1 half end style cross times open parentheses negative 4 close parentheses end exponent end cell row blank equals cell x to the power of begin display style 8 over 3 end style end exponent over y to the power of negative 10 end exponent end cell row blank equals cell fraction numerator x to the power of begin display style 8 over 3 end style end exponent over denominator begin display style 1 over y to the power of 10 end style end fraction end cell row blank equals cell x to the power of 2 2 over 3 end exponent y to the power of 10 end cell row blank equals cell x squared space cube root of x squared end root y to the power of 10 end cell end table

Dengan demikian, bentuk sederhana dari open parentheses x to the power of negative begin display style 2 over 3 end style end exponent over y to the power of 2 begin display style 1 half end style end exponent close parentheses to the power of negative 4 end exponent adalah table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell x squared space cube root of x squared end root y to the power of 10 end cell end table.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

26

Iklan

Pertanyaan serupa

Hasil dari 8 4 5 ​ 2 4 3 ​ × 4 3 2 ​ ​ adalah ...

2

3.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia