Iklan

Pertanyaan

Perhatikan sistem persamaan berikut ini! Himpunan penyelesaian dari sistem persamaan di atas adalah ....

Perhatikan sistem persamaan berikut ini!

begin mathsize 14px style open curly brackets table row cell y equals x squared minus 2 x minus 8 end cell row cell y equals negative x squared plus x plus 12 end cell end table close end style

Himpunan penyelesaian dari sistem persamaan di atas adalah ....

  1. HP equals open curly brackets open parentheses 13 over 4 comma negative 5 over 2 close parentheses comma space open parentheses 4 , space 0 close parentheses close curly brackets 

  2. HP equals open curly brackets open parentheses 13 over 4 comma negative 5 over 2 close parentheses comma space open parentheses 0 comma space 4 close parentheses close curly brackets  

  3. HP equals open curly brackets open parentheses negative 5 over 2 comma space 13 over 4 close parentheses comma space open parentheses 4 , space 0 close parentheses close curly brackets 

  4. HP equals open curly brackets open parentheses negative 5 over 2 comma space 13 over 4 close parentheses comma space open parentheses 0 comma space 4 close parentheses close curly brackets  

  5. HP equals open curly brackets open parentheses negative 5 over 2 comma space 0 close parentheses comma space open parentheses 4 , space 13 over 4 close parentheses close curly brackets  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

15

:

37

:

17

Klaim

Iklan

N. Syafriah

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah C.

jawaban yang tepat adalah C.

Pembahasan

Substitusikan ke persamaan sehingga diperoleh perhitungan sebagai berikut. Substitusikan nilai yang telah diperoleh ke salah satu persamaan di atas untuk mendapatkan nilai . Jika disubstitusikan ke y = − x 2 + x + 12 , maka didapatnilai sepertiberikut. y ​ = = = = ​ − ( − 2 5 ​ ) 2 + ( − 2 5 ​ ) + 12 − 4 25 ​ − 2 5 ​ + 12 − 4 25 ​ − 4 10 ​ + 4 48 ​ 4 13 ​ ​ Jika disubstitusikan ke y = − x 2 + x + 12 , maka didapatnilai sepertiberikut. Dengan demikian, himpunan penyelesaian sistem persamaan tersebut adalah Jadi, jawaban yang tepat adalah C.

Substitusikan begin mathsize 14px style y equals x squared minus 2 x minus 8 end style ke persamaan begin mathsize 14px style y equals negative x squared plus x plus 12 end style sehingga diperoleh perhitungan sebagai berikut.

Error converting from MathML to accessible text. 

Substitusikan nilai begin mathsize 14px style x end style yang telah diperoleh ke salah satu persamaan di atas untuk mendapatkan nilai begin mathsize 14px style y end style.

Jika begin mathsize 14px style x equals negative 5 over 2 end style disubstitusikan ke  maka didapat nilai begin mathsize 14px style y end style seperti berikut.

Jika begin mathsize 14px style x equals 4 end style disubstitusikan ke maka didapat nilai begin mathsize 14px style y end style seperti berikut.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell negative 4 squared plus 4 plus 12 end cell row blank equals cell negative 16 plus 4 plus 12 end cell row blank equals 0 end table end style 

Dengan demikian, himpunan penyelesaian sistem persamaan tersebut adalah HP equals open curly brackets open parentheses negative 5 over 2 comma space 13 over 4 close parentheses comma space open parentheses 4 , space 0 close parentheses close curly brackets.

Jadi, jawaban yang tepat adalah C.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Jika himpunan penyelesaian dari adalah , maka p + q = ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia