Iklan

Pertanyaan

Nilai logaritma dari adalah ….

Nilai logaritma dari begin mathsize 14px style straight space to the power of square root of straight a end exponent log invisible function application 1 over straight b squared straight space cross times straight space to the power of straight c squared end exponent log invisible function application square root of straight a cubed end root straight space cross times straight space to the power of straight b cubed end exponent log invisible function application 1 over straight c squared end style  adalah ….

  1. 1

  2. 2

  3. 3

  4. 4

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

05

:

35

:

43

Klaim

Iklan

N. Ayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Padang

Jawaban terverifikasi

Pembahasan

Ingat, Bentuk umum logaritma! sifat-sifat Logaritma:

Ingat, Bentuk umum logaritma!

begin mathsize 14px style straight space to the power of straight a log invisible function application straight b equals straight x straight space left right arrow straight a to the power of straight x equals straight b space dimana space straight a comma space straight b space greater than space 0 end style

sifat-sifat Logaritma:

begin mathsize 14px style a right parenthesis space space to the power of a l o g space a equals 1 b right parenthesis space space to the power of a to the power of n end exponent log invisible function application b to the power of m equals m over n. to the power of a log invisible function application b c right parenthesis space space to the power of a log invisible function application b cross times space to the power of b log invisible function application c cross times space to the power of c log invisible function application d equals space to the power of a log invisible function application d  M a k a colon space to the power of square root of a end exponent log invisible function application 1 over b squared space cross times space to the power of c squared end exponent log invisible function application square root of a cubed end root space cross times space to the power of b cubed end exponent log invisible function application 1 over c squared equals space to the power of square root of a end exponent log invisible function application 1 over b squared space cross times space to the power of b cubed end exponent log invisible function application 1 over c squared space cross times space to the power of c squared end exponent log invisible function application square root of a cubed end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space to the power of open parentheses a close parentheses to the power of 1 half end exponent end exponent log invisible function application b to the power of negative 2 end exponent space cross times space to the power of b cubed end exponent log invisible function application c to the power of negative 2 end exponent space cross times space to the power of c squared end exponent log invisible function application a to the power of 3 over 2 end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open parentheses negative fraction numerator 2 over denominator 1 half end fraction close parentheses. open parentheses negative 2 over 3 close parentheses. open parentheses fraction numerator 3 over 2 over denominator 2 end fraction close parentheses space to the power of a log invisible function application b space cross times space to the power of b log invisible function application c space cross times space to the power of c log invisible function application a space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open parentheses negative 4 close parentheses open parentheses negative 2 over 3 close parentheses open parentheses 3 over 4 close parentheses space space to the power of a log invisible function application a space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 2 end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

rini nur indah sari

Pembahasan terpotong

Iklan

Pertanyaan serupa

Nilai x yang memenuhi persamaan ( 4 lo g x ) 2 − 2 4 lo g x ​ = 4 lo g 4 64 ​ adalah ...

4

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia