Iklan

Pertanyaan

Jika untuk x ≥ 19, maka nilai ∫f(x) dx untuk x ≥ 0 adalah ….

Jika begin mathsize 14px style integral f to the power of negative 1 end exponent open parentheses x close parentheses blank d x equals fraction numerator 2 square root of 3 over denominator 9 end fraction open parentheses x minus 19 close parentheses to the power of 3 over 2 end exponent plus C subscript 1 end style untuk x ≥ 19, maka nilai ∫f(x) dx untuk x ≥ 0 adalah ….

  1. begin mathsize 14px style 3 over 2 x cubed plus 19 x plus C end style

  2. begin mathsize 14px style negative 3 over 2 x cubed plus 19 x plus C end style

  3. begin mathsize 14px style x cubed plus 19 x plus C end style

  4. begin mathsize 14px style negative x cubed plus 19 x plus C end style

  5. begin mathsize 14px style x cubed minus 19 x plus C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

21

:

34

:

58

Klaim

Iklan

H. Nufus

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

Perhatikan bahwa Kemudian, jika dimisalkan , maka f(x) = y dapat dicari dengan cara sebagai berikut Maka didapat . Sehingga diperoleh

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral f to the power of negative 1 end exponent open parentheses x close parentheses blank d x end cell equals cell fraction numerator 2 square root of 3 over denominator 9 end fraction open parentheses x minus 19 close parentheses to the power of 3 over 2 end exponent plus C end cell row cell fraction numerator d over denominator d x end fraction open parentheses integral f to the power of negative 1 end exponent open parentheses x close parentheses d x close parentheses end cell equals cell fraction numerator d over denominator d x end fraction open parentheses fraction numerator 2 square root of 3 over denominator 9 end fraction open parentheses x minus 19 close parentheses to the power of 3 over 2 end exponent plus C close parentheses end cell row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell fraction numerator 2 square root of 3 over denominator 9 end fraction times 3 over 2 times open parentheses x minus 19 close parentheses to the power of 1 half end exponent end cell row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell fraction numerator square root of 3 over denominator 3 end fraction open parentheses x minus 19 close parentheses to the power of 1 half end exponent end cell end table end style

Kemudian, jika dimisalkan begin mathsize 14px style f to the power of negative 1 end exponent open parentheses y close parentheses equals x end style, maka f(x) = y dapat dicari dengan cara sebagai berikut

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f to the power of negative 1 end exponent open parentheses y close parentheses end cell equals x row cell fraction numerator square root of 3 over denominator 3 end fraction open parentheses y minus 19 close parentheses to the power of 1 half end exponent end cell equals x row cell open parentheses y minus 19 close parentheses to the power of 1 half end exponent end cell equals cell fraction numerator 3 over denominator square root of 3 end fraction x end cell row cell y minus 19 end cell equals cell open parentheses fraction numerator 3 over denominator square root of 3 end fraction x close parentheses squared end cell row cell y minus 19 end cell equals cell open parentheses fraction numerator 3 over denominator square root of 3 end fraction close parentheses squared x squared end cell row cell y minus 19 end cell equals cell 9 over 3 x squared end cell row cell y minus 19 end cell equals cell 3 x squared end cell row y equals cell 3 x squared plus 19 end cell end table end style

Maka didapat begin mathsize 14px style f open parentheses x close parentheses equals 3 x squared plus 19. end style.

Sehingga diperoleh

begin mathsize 14px style integral f left parenthesis x right parenthesis d x equals integral left parenthesis 3 x squared plus 19 right parenthesis d x equals 3 times 1 third times x cubed plus 19 x plus C equals x cubed plus 19 x plus C end style 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Diketahui ∫f(x) dx = a x 2 + bx + C, dan a > 0. Jika a,f(a),2b membentuk deret aritmetika dan f(b) = 6 maka nilai dari ∫f(x) dx adalah ….

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia