Iklan

Pertanyaan

Jika nilai maksimum dan nilai minimum fungsi f ( x ) = sin 2 x − cos 2 x − 5 pada 0 ∘ ≤ x ≤ 36 0 ∘ masing-masing adalah mdan n, maka m - n =....

Jika nilai maksimum dan nilai minimum fungsi  pada  masing-masing adalah m dan n, maka m - n =.... 

  1. -10

  2. -6

  3. -2

  4. 2

  5. 10

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

01

:

50

:

34

Iklan

Y. Endah

Master Teacher

Mahasiswa/Alumni Institut Teknologi Bandung

Jawaban terverifikasi

Pembahasan

begin mathsize 14px style straight f apostrophe space left parenthesis straight x right parenthesis equals 0 space 2 space sin space straight x space space cos space straight x minus 2 space cos space straight x space left parenthesis negative sin space straight x right parenthesis equals 0 space 4 space sin space straight x space space cos space straight x equals 0 space sin space straight x space space cos space straight x equals 0 space space  sin space straight x equals 0 space straight x equals 0 degree space atau space straight x equals 180 degree space atau space straight x equals 360 degree space space  cos space straight x equals 0 space straight x equals 90 degree space atau space straight x equals 270 degree  straight f left parenthesis 0 degree right parenthesis equals 0 minus 1 minus 5 equals negative 6 space straight f left parenthesis 90 degree right parenthesis equals 1 minus 0 minus 5 equals negative 4 space straight f left parenthesis 180 degree right parenthesis equals 0 minus 1 minus 5 equals negative 6 space straight f left parenthesis 270 degree right parenthesis equals 1 minus 0 minus 5 equals negative 4 space straight f left parenthesis 360 degree right parenthesis equals 0 minus 1 minus 5 equals negative 6 space space  Nilai space maksimum space equals straight m equals negative 4 space Nilai space minimum space straight n equals negative 6 space space  straight m minus straight n equals negative 4 plus 6 equals 2 end style

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

5

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!