Iklan

Pertanyaan

Jika ( 25 1 ​ ) x − 1 = 5 3 5 2 x + 1 ​ maka x = … .

Jika  maka 

  1. 0 comma 25 

  2. 0 comma 5 

  3. 1 

  4. 2 

  5. 4

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

03

:

48

:

25

Klaim

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah A.

jawaban yang benar adalah A.space 

Pembahasan

Ingat kembali: Jika , , dan a  = 1 ,maka dengan dengan Dengan demikian, sehingga karena a = 5 yang berarti , dan a  = 1 , makadiperoleh Oleh karena itu, jawaban yang benar adalah A.

Ingat kembali:

  • Jika a to the power of f open parentheses x close parentheses end exponent equals a to the power of g open parentheses x close parentheses end exponenta greater than 0, dan , maka f open parentheses x close parentheses equals g open parentheses x close parentheses
  • 1 over a to the power of m equals a to the power of negative m end exponent dengan a not equal to 0
  • n-th root of a to the power of m end root equals a to the power of m over n end exponent dengan a greater than 0
  • a equals a to the power of 1
  • a to the power of m a to the power of n equals a to the power of m plus n end exponent
  • open parentheses a to the power of m close parentheses to the power of n equals a to the power of m n end exponent

Dengan demikian, 

open parentheses 1 over 25 close parentheses to the power of x minus 1 end exponent equals 5 cube root of 5 to the power of 2 x plus 1 end exponent end root open parentheses 1 over 5 squared close parentheses to the power of x minus 1 end exponent equals 5 to the power of 1 open parentheses 5 to the power of fraction numerator 2 x plus 1 over denominator 3 end fraction end exponent close parentheses open parentheses 5 to the power of negative 2 end exponent close parentheses to the power of x minus 1 end exponent equals 5 to the power of 1 open parentheses 5 to the power of fraction numerator 2 x plus 1 over denominator 3 end fraction end exponent close parentheses 5 to the power of negative 2 x plus 2 end exponent equals 5 to the power of 1 plus fraction numerator 2 x plus 1 over denominator 3 end fraction end exponent 5 to the power of negative 2 x plus 2 end exponent equals 5 to the power of 3 over 3 plus fraction numerator 2 x plus 1 over denominator 3 end fraction end exponent 5 to the power of negative 2 x plus 2 end exponent equals 5 to the power of fraction numerator 2 x plus 1 plus 3 over denominator 3 end fraction end exponent 5 to the power of negative 2 x plus 2 end exponent equals 5 to the power of fraction numerator 2 x plus 4 over denominator 3 end fraction end exponent

sehingga karena  yang berarti a greater than 0, dan , maka diperoleh

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell table row cell negative 2 x plus 2 equals fraction numerator 2 x plus 4 over denominator 3 end fraction end cell row cell open parentheses negative 2 x plus 2 close parentheses cross times 3 equals 2 x plus 4 end cell row cell negative 6 x plus 6 equals 2 x plus 4 end cell row cell negative 6 x equals 2 x plus 4 minus 6 end cell row cell negative 6 x minus 2 x equals 4 minus 6 end cell row cell negative 8 x equals negative 2 end cell row cell x equals fraction numerator negative 2 over denominator negative 8 end fraction end cell row cell x equals fraction numerator negative 2 divided by negative 2 over denominator negative 8 divided by negative 2 end fraction end cell row cell x equals 1 fourth end cell row cell x equals 0 comma 25 end cell end table end cell end table

Oleh karena itu, jawaban yang benar adalah A.space 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

7

Ahmad syahdan

Makasih ❤️

Iklan

Pertanyaan serupa

Nilai x yang memenuhi persamaan 2 2 3 x − 1 ​ = 4 8 1 − 3 x ​ adalah ....

1

3.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia