Iklan

Pertanyaan

Jika p = ( x 2 3 ​ + x 2 1 ​ ) ( x 3 1 ​ − x − 3 1 ​ ) dan q = ( x 2 1 ​ + x − 2 1 ​ ) ( x − x 3 1 ​ ) , maka q p ​ = ...

Jika  dan  maka 

  1. cube root of x

  2. cube root of x squared end root

  3. x

  4. x cubed square root of x

  5. x cubed square root of x squared end root

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

21

:

44

:

53

Klaim

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Pembahasan

p over q equals fraction numerator open parentheses x to the power of begin display style 3 over 2 end style end exponent plus x to the power of begin display style 1 half end style end exponent close parentheses begin display style open parentheses x to the power of 1 third end exponent minus x to the power of negative 1 third end exponent close parentheses end style over denominator open parentheses x to the power of begin display style 1 half end style end exponent plus x to the power of negative begin display style 1 half end style end exponent close parentheses begin display style open parentheses x minus x to the power of 1 third end exponent close parentheses end style end fraction space space space space space equals fraction numerator begin display style open square brackets x open parentheses x to the power of 1 half end exponent plus x to the power of negative 1 half end exponent close parentheses close square brackets open parentheses x to the power of 1 third end exponent minus x to the power of negative 1 third end exponent close parentheses end style over denominator open parentheses x to the power of begin display style 1 half end style end exponent plus x to the power of negative begin display style 1 half end style end exponent close parentheses begin display style open square brackets x to the power of 2 over 3 end exponent open parentheses x to the power of 1 third end exponent minus x to the power of negative 1 third end exponent close parentheses close square brackets end style end fraction space space space space space space equals x over x to the power of begin display style 2 over 3 end style end exponent space space space space space space equals x to the power of 1 minus 2 over 3 end exponent space space space space space space equals x to the power of 1 third end exponent space space space space space equals cube root of x

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

N i l ai d a r i x . 6 x + 1 ​ ( 6 x 2 ​ ) ( 3 x 2 . x + 1 ​ ​ ) ​ = ...

2

4.7

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia