Iklan

Pertanyaan

N i l ai d a r i x . 6 x + 1 ​ ( 6 x 2 ​ ) ( 3 x 2 . x + 1 ​ ​ ) ​ = ...

  1. x square root of x plus 1 end root

  2. x

  3. 1

  4. fraction numerator 1 over denominator root index 6 of x squared end root end fraction

  5. fraction numerator x over denominator square root of x plus 1 end root end fraction

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

21

:

45

:

07

Klaim

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Pembahasan

begin mathsize 14px style fraction numerator open parentheses root index 6 of x squared end root close parentheses open parentheses cube root of x squared. square root of x plus 1 end root end root close parentheses over denominator x. root index 6 of x plus 1 end root end fraction equals fraction numerator x to the power of begin display style 2 over 6 end style end exponent open parentheses x squared open parentheses x plus 1 close parentheses to the power of begin display style 1 half end style end exponent close parentheses to the power of begin display style 1 third end style end exponent over denominator x open parentheses x plus 1 close parentheses to the power of begin display style 1 over 6 end style end exponent end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator x to the power of begin display style 1 third end style end exponent open parentheses x squared close parentheses to the power of begin display style 1 third end style end exponent open parentheses open parentheses x plus 1 close parentheses to the power of begin display style 1 half end style end exponent close parentheses to the power of begin display style 1 third end style end exponent over denominator x open parentheses x plus 1 close parentheses to the power of begin display style 1 over 6 end style end exponent end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator x to the power of begin display style 1 third end style end exponent x to the power of begin display style 2 over 3 end style end exponent up diagonal strike open parentheses x plus 1 close parentheses to the power of begin display style 1 over 6 end style end exponent end strike over denominator x up diagonal strike open parentheses x plus 1 close parentheses to the power of begin display style 1 over 6 end style end exponent end strike end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator x to the power of begin display style 1 third end style end exponent x to the power of begin display style 2 over 3 end style end exponent over denominator x end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals x to the power of begin display style 1 third end style plus begin display style 2 over 3 end style end exponent over x space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals x over x space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 1 space end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Muhammad Hafiz Reyhan

Makasih ❤️

Meliana Safitri

Mudah dimengerti Bantu banget Makasih ❤️

Iklan

Pertanyaan serupa

Jika p = ( x 2 3 ​ + x 2 1 ​ ) ( x 3 1 ​ − x − 3 1 ​ ) dan q = ( x 2 1 ​ + x − 2 1 ​ ) ( x − x 3 1 ​ ) , maka q p ​ = ...

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia