Iklan

Pertanyaan

Hasil dari adalah ....

Hasil dari begin mathsize 14px style integral open parentheses 19 x to the power of 18 minus 18 x to the power of negative 19 end exponent plus 14 root index 13 of x close parentheses blank d x end style adalah ....

  1. begin mathsize 14px style x to the power of 18 plus 1 over x to the power of 18 plus 13 x root index 13 of x plus C end style 

  2. begin mathsize 14px style x to the power of 19 plus 1 over x to the power of 18 plus 14 x root index 13 of x plus C end style 

  3. begin mathsize 14px style x to the power of 19 minus 1 over x to the power of 18 plus 13 x root index 13 of x plus C end style 

  4. begin mathsize 14px style x to the power of 18 minus 1 over x to the power of 18 plus 14 x root index 13 of x plus C end style 

  5. begin mathsize 14px style x to the power of 19 plus 1 over x to the power of 18 plus 13 x root index 13 of x plus C end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

20

:

13

:

03

Klaim

Iklan

R. RGFLSATU

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah E.

jawaban yang tepat adalah E.

Pembahasan

Perhatikan perhitungan berikut. Misalkan maka Jadi, jawaban yang tepat adalah E.

Perhatikan perhitungan berikut.

begin mathsize 14px style integral open parentheses 19 x to the power of 18 minus 18 x to the power of negative 19 end exponent plus 14 root index 13 of x close parentheses blank d xequals integral 19 x to the power of 18 blank d x minus integral 18 x to the power of negative 19 end exponent blank d x plus integral 14 root index 13 of x blank d xequals 19 integral x to the power of 18 blank d x minus 18 integral x to the power of negative 19 end exponent blank d x plus 14 integral x to the power of 1 over 13 end exponent blank d xequals 19 open parentheses fraction numerator 1 over denominator 18 plus 1 end fraction x to the power of 18 plus 1 end exponent plus C subscript 1 close parentheses minus 18 open parentheses fraction numerator 1 over denominator negative 19 plus 1 end fraction x to the power of negative 19 plus 1 end exponent plus C subscript 2 close parentheses plus 14 open parentheses fraction numerator 1 over denominator 1 over 13 plus 1 end fraction x to the power of 1 over 13 plus 1 end exponent plus C subscript 3 close parenthesesequals 19 open parentheses 1 over 19 x to the power of 19 plus C subscript 1 close parentheses minus 18 open parentheses fraction numerator 1 over denominator negative 18 end fraction x to the power of negative 18 end exponent plus C subscript 2 close parentheses plus 14 open parentheses fraction numerator 1 over denominator 14 over 13 end fraction x to the power of 14 over 13 end exponent plus C subscript 3 close parenthesesequals 19 times 1 over 19 x to the power of 19 plus 19 C subscript 1 minus 18 times fraction numerator 1 over denominator negative 18 end fraction x to the power of negative 18 end exponent minus 18 C subscript 2 plus 14 times 13 over 14 x to the power of 14 over 13 end exponent plus 14 C subscript 3equals x to the power of 19 plus 19 C subscript 1 plus x to the power of negative 18 end exponent minus 18 C subscript 2 plus 13 x to the power of 14 over 13 end exponent plus 14 C subscript 3equals x to the power of 19 plus 1 over x to the power of 18 plus 13 x root index 13 of x plus 19 C subscript 1 minus 18 C subscript 2 plus 14 C subscript 3 end style 

Misalkan begin mathsize 14px style 19 C subscript 1 minus 18 C subscript 2 plus 14 C subscript 3 equals C comma end style maka

begin mathsize 14px style x to the power of 19 plus 1 over x to the power of 18 plus 13 x root index 13 of x plus 19 C subscript 1 minus 18 C subscript 2 plus 14 C subscript 3 equals x to the power of 19 plus 1 over x to the power of 18 plus 13 x root index 13 of x plus C end style 

Jadi, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

12

Iklan

Pertanyaan serupa

Hasil dari ∫ ( x − 3 ) ( 3 x + 5 ) 3 x 4 − 16 x 3 + 10 x 2 + 48 x − 45 ​ d x adalah ....

28

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia