Iklan

Pertanyaan

Diketahui P ( x ) = C ( 4 , x ) . ( 0 , 8 ) x . ( 0 , 2 ) 4 − x , untuk x = 0 , 1 , 2 , 3 , 4. Tentukan nilai dari : a. P ( 1 )

Diketahui , untuk  Tentukan nilai dari :

a.   

Belajar bareng Champions

Brain Academy Champions

Hanya di Brain Academy

Habis dalam

00

:

23

:

22

:

35

Klaim

Iklan

R. RGFLLIMA

Master Teacher

Jawaban terverifikasi

Jawaban

Nilai .

Nilai begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell straight P left parenthesis 1 right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 0 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank comma end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 0256 end table end style.

Pembahasan

Dengan mensubstitusikan nilai terhadap , maka : Jadi, Nilai .

Dengan mensubstitusikan nilai begin mathsize 14px style straight x equals 1 end style terhadap begin mathsize 14px style straight P left parenthesis straight x right parenthesis end style, maka : 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell P left parenthesis 1 right parenthesis end cell equals cell C left parenthesis 4 comma space 1 right parenthesis. left parenthesis 0 comma 8 right parenthesis to the power of 1. left parenthesis 0 comma 2 right parenthesis to the power of 4 minus 1 end exponent end cell row blank equals cell fraction numerator 4 factorial over denominator left parenthesis 4 minus 1 right parenthesis factorial.1 factorial end fraction cross times left parenthesis 0 comma 8 right parenthesis cross times left parenthesis 0 comma 2 right parenthesis cubed space end cell row blank equals cell fraction numerator 4 factorial over denominator 3 factorial.1 factorial end fraction cross times left parenthesis 0 comma 8 right parenthesis cross times left parenthesis 0 comma 2 right parenthesis cubed space end cell row blank equals cell 4 cross times left parenthesis 0 comma 8 right parenthesis cross times left parenthesis 0 comma 008 end cell row blank equals cell 0 comma 0256 end cell end table end style    

Jadi, Nilai begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell straight P left parenthesis 1 right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 0 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank comma end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 0256 end table end style.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Tunjukkan bahwa P ( n , r ) = r ! C ( n , r )

17

4.2

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia