Iklan

Pertanyaan

Diketahui rumus fungsi f ( x ) = 3 x − 9 dan g ( x ) = 2 x 2 − 1 . Maka tentukan nilai dari g − 1 ( x ) = ...

Diketahui rumus fungsi . Maka tentukan nilai dari   

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

04

:

01

:

09

Klaim

Iklan

S. Surya

Master Teacher

Jawaban terverifikasi

Jawaban

rumus fungsi .

rumus fungsi table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell g to the power of negative 1 end exponent left parenthesis x right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell square root of fraction numerator x plus 1 over denominator 2 end fraction end root end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank comma end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table greater than table attributes columnalign right center left columnspacing 0px end attributes row blank blank minus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 1 end table.

Pembahasan

Diasumsikan yang ditanyakan adalah rumus fungsi Jadi, rumus fungsi .

Diasumsikan yang ditanyakan adalah rumus fungsi g to the power of negative 1 end exponent

table attributes columnalign right center left columnspacing 0px end attributes row cell g left parenthesis x right parenthesis end cell equals cell 2 x squared minus 1 end cell row y equals cell 2 x squared minus 1 end cell row cell y plus 1 end cell equals cell 2 x squared end cell row cell fraction numerator y plus 1 over denominator 2 end fraction end cell equals cell x squared end cell row cell square root of fraction numerator y plus 1 over denominator 2 end fraction end root end cell equals x row cell square root of fraction numerator y plus 1 over denominator 2 end fraction end root end cell equals cell g to the power of negative 1 end exponent left parenthesis y right parenthesis end cell row cell square root of fraction numerator x plus 1 over denominator 2 end fraction end root end cell equals cell g to the power of negative 1 end exponent left parenthesis x right parenthesis end cell row cell g to the power of negative 1 end exponent left parenthesis x right parenthesis end cell equals cell square root of fraction numerator x plus 1 over denominator 2 end fraction end root comma space x greater than negative 1 end cell end table    

Jadi, rumus fungsi table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell g to the power of negative 1 end exponent left parenthesis x right parenthesis end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell square root of fraction numerator x plus 1 over denominator 2 end fraction end root end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank comma end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table greater than table attributes columnalign right center left columnspacing 0px end attributes row blank blank minus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 1 end table.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Carilah invers dari fungsi-fungsi berikut. e. f ( x ) = x 2 + 1 ​

2

2.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia