Iklan

Pertanyaan

Diketahui p = 343 x − m + n + 1 y n 729 x m + 1 y − n + 2 ​ dan ​ ​ q ​ ​ = ​ ​ ​ ​ 27 x m + 2 n y 2 m − 2 7 x − m + 2 y 3 ​ ​ . Jika 49 pq = y 9 x 4 m − 15 ​ , maka nilai dari 2 m + 3 − n adalah ....

Diketahui  dan . Jika , maka nilai dari  adalah ....

  1. begin mathsize 14px style 16 1 third end style

  2. begin mathsize 14px style 19 end style

  3. begin mathsize 14px style 32 1 third end style

  4. begin mathsize 14px style 35 end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

05

:

07

:

21

Klaim

Iklan

I. Roy

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah D.

jawaban yang tepat adalah D.

Pembahasan

Perhatikan bahwa dan sehingga Pada soal diketahui , maka kita punya Dari persamaan di atas, dengan menyamakan pangkat dari dan , kita peroleh dan Untuk mencari nilai dan , kita lakukan eliminasi pada kedua persamaan di atas. Dengan mengeliminasi , kita peroleh Selanjutnya substitusi nilai ke persamaan , kita peroleh Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah D.

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row p equals cell fraction numerator 729 x to the power of m italic plus italic 1 end exponent y to the power of negative n plus 2 end exponent over denominator 343 x to the power of negative m plus n plus 1 end exponent y to the power of n end fraction end cell row blank equals cell fraction numerator 3 to the power of 6 x to the power of m plus 1 minus open parentheses negative m plus n plus 1 close parentheses end exponent y to the power of negative n plus 2 minus n end exponent over denominator 7 cubed end fraction end cell row blank equals cell fraction numerator 3 to the power of 6 x to the power of m plus 1 plus m minus n minus 1 end exponent y to the power of negative n plus 2 minus n end exponent over denominator 7 cubed end fraction end cell row blank equals cell fraction numerator 3 to the power of 6 x to the power of 2 m minus n end exponent y to the power of negative 2 n plus 2 end exponent over denominator 7 cubed end fraction end cell end table end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row q equals cell fraction numerator 7 x to the power of negative m plus 2 end exponent y cubed over denominator 27 x to the power of m plus 2 n end exponent y to the power of 2 m minus 2 end exponent end fraction end cell row blank equals cell fraction numerator 7 x to the power of negative m plus 2 minus left parenthesis m plus 2 n right parenthesis end exponent y to the power of 3 minus left parenthesis 2 m minus 2 right parenthesis end exponent over denominator 3 cubed end fraction end cell row blank equals cell fraction numerator 7 x to the power of negative m plus 2 minus m minus 2 n end exponent y to the power of 3 minus 2 m plus 2 end exponent over denominator 3 cubed end fraction end cell row blank equals cell fraction numerator 7 x to the power of negative 2 m minus 2 n plus 2 end exponent y to the power of negative 2 m plus 5 end exponent over denominator 3 cubed end fraction end cell end table end style

sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 49 p q end cell equals cell 49 open parentheses 7 to the power of negative 3 end exponent 3 to the power of 6 x to the power of 2 m minus n end exponent y to the power of negative 2 n plus 2 end exponent close parentheses open parentheses 3 to the power of negative 3 end exponent 7 x to the power of negative 2 m minus 2 n plus 2 end exponent y to the power of negative 2 m plus 5 end exponent close parentheses end cell row blank equals cell 7 squared open parentheses 7 to the power of negative 3 end exponent 3 to the power of 6 x to the power of 2 m minus n end exponent y to the power of negative 2 n plus 2 end exponent close parentheses open parentheses 3 to the power of negative 3 end exponent 7 x to the power of negative 2 m minus 2 n plus 2 end exponent y to the power of negative 2 m plus 5 end exponent close parentheses end cell row blank equals cell 7 to the power of 2 minus 3 plus 1 end exponent 3 to the power of 6 minus 3 end exponent x to the power of 2 m minus n minus 2 m minus 2 n plus 2 end exponent y to the power of negative 2 n plus 2 minus 2 m plus 5 end exponent end cell row blank equals cell 7 to the power of 0 3 squared x to the power of negative 3 n plus 2 end exponent y to the power of negative 2 m minus 2 n plus 7 end exponent end cell row blank equals cell 9 x to the power of negative 3 n plus 2 end exponent y to the power of negative 2 m minus 2 n plus 7 end exponent end cell row blank blank blank end table end style

Pada soal diketahui begin mathsize 14px style 49 p q equals fraction numerator 9 x to the power of 4 m minus 15 end exponent over denominator y end fraction end style, maka kita punya

undefined

Dari persamaan di atas, dengan menyamakan pangkat dari begin mathsize 14px style x end style dan size 14px y, kita peroleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 4 m minus 15 end cell equals cell negative 3 n plus 2 end cell row cell 4 m plus 3 n end cell equals cell 2 plus 15 end cell row cell 4 m plus 3 n end cell equals 17 end table end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell negative 1 end cell equals cell negative 2 m minus 2 n plus 7 end cell row cell 2 m plus 2 n end cell equals cell 7 plus 1 end cell row cell 2 m plus 2 n end cell equals 8 row cell m plus n end cell equals 4 end table end style

Untuk mencari nilai begin mathsize 14px style m end style dan begin mathsize 14px style n end style, kita lakukan eliminasi pada kedua persamaan di atas. Dengan mengeliminasi begin mathsize 14px style m end style, kita peroleh

begin mathsize 14px style table row cell 4 m plus 3 n equals 17 end cell row cell m plus n equals 4 end cell end table open vertical bar table row cell cross times 1 end cell row cell cross times 4 end cell end table close vertical bar bottom enclose table row cell 4 m plus 3 n equals 17 end cell row cell 4 m plus 4 n equals 16 end cell end table end enclose subscript minus table row cell negative n equals 1 end cell row cell n equals negative 1 end cell end table  end style

Selanjutnya substitusi nilai begin mathsize 14px style n equals negative 1 end style ke persamaan begin mathsize 14px style m plus n equals 4 end style, kita peroleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell m plus n end cell equals 4 row cell m plus left parenthesis negative 1 right parenthesis end cell equals 4 row cell m minus 1 end cell equals 4 row m equals cell 4 plus 1 end cell row m equals 5 end table end style

Dengan demikian, kita peroleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 2 to the power of m plus 3 to the power of negative n end exponent end cell equals cell 2 to the power of 5 plus 3 to the power of negative left parenthesis negative 1 right parenthesis end exponent end cell row blank equals cell 2 to the power of 5 plus 3 to the power of 1 end cell row blank equals cell 32 plus 3 end cell row blank equals 35 end table end style

Jadi, jawaban yang tepat adalah D.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Nilai x yang memenuhi persamaan 3 5 x − 2 = 3 3 x − 16 adalah ....

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2026 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia